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A B S T R A C T   

Bilingual language control refers to a bilingual’s ability to speak exclusively in one language without the un-
intended language intruding. It has been debated in the literature whether bilinguals need an inhibitory 
mechanism to control language output or whether a non-inhibitory mechanism can be used. This paper presents 
mathematical models instantiating the two accounts. The models explain how participants’ reaction times in 
language production (naming) are impacted by across-trial semantic relatedness and consistency of language 
(same or different language across trials). The models’ predictions were compared to data from an experiment in 
which participants named semantically-related and -unrelated pictures in their first and second language. Results 
indicate that within-language facilitation effects are abolished after a language switch, supporting the predictions 
of the Inhibitory Model. However, within-language facilitation was observed over the course of ‘stay’ trials in 
which no language switch was required, contrary to the predictions of both models. A second experiment was 
conducted to determine the origin of this unexpected facilitation, by separating spreading activation effects from 
incremental learning effects. The results suggest the facilitation observed in Experiment 1 was due to spreading 
activation. Together, the modeling and data suggest that language switching abolishes spreading activation ef-
fects, but cumulative semantic interference (created by incremental learning) is unaffected by language 
switching. This suggests that (1) within-language control is non-competitive, (2) between-language language 
control is competitive and (3) incremental learning plays a role in bilingual language speech production.   

Introduction 

When bilinguals speak, they must choose their words carefully. 
Depending on the audience, a bilingual may be free to choose words 
from either language (e.g., when conversing with other bilinguals), or 
they may be constrained to only one language (e.g., when conversing 
with monolinguals). To date, there have been several demonstrations 
that competition for selection occurs between a bilingual’s two lan-
guages (for a review, see Kroll, Bobb, Misra, & Guo, 2008). Thus, if two 
highly active words are candidates for lexical retrieval, how do bi-
linguals choose the correct one? This study seeks to address whether 
inhibition is used to control output by examining whether switching 

languages abolishes short-term spreading activation. Unlike previous 
studies, it does so in a way that controls for confounding longer-term 
learning effects. 

Much important prior work has sought the answer to this question 
within the language switching paradigm, in which bilingual participants 
must name stimuli in one of their two languages depending on a cue 
which varies over trials (e.g., Costa & Caramazza, 1999; Costa, Santes-
teban, & Ivanova, 2006; Gollan & Ferreira, 2009; Jackson, Swainson, 
Cunnington, & Jackson, 2001; Linck, Schwieter, & Sunderman, 2012; 
Meuter & Allport, 1999; Verhoef, Roelofs, & Chwilla, 2009). Of these 
studies, some have concluded that inhibition is the mechanism (Green, 
1998; Green & Abutalebi, 2013; Meuter & Allport, 1999), while others 
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posit a non-inhibitory lexical selection mechanism for all bilinguals (e. 
g., Costa & Santesteban, 2004), or a non-inhibitory mechanism that 
develops as bilinguals become more fluent (e.g., Costa et al., 2006). The 
present investigation takes a different approach by instantiating these 
(predominantly verbal) theories of bilingual control and spreading 
activation into two computational models (Non-Inhibitory and Inhibi-
tory). We then use the models to predict reaction times on a trial by trial 
basis for a sample of mostly proficient bilinguals. 

Beyond the need for clear formal predictions, there are also issues to 
address with respect to the diagnosticity of the predominant experi-
mental paradigm. Experiments that use the language switching para-
digm have bilingual participants name pictures in either their dominant 
language (L1) or non-dominant language (L2). The order of the language 
can be pseudo-randomized or fixed. Analyses focus on switch costs, 
which measure how much longer it takes participants to switch into a 
language (i.e., name a picture with a different language than the one 
used on the previous trial) compared to the time it takes participants to 
stay in a language (i.e., name a picture using the same language as the 
previous trial). 

According to inhibitory models, if a bilingual’s L1 is much stronger 
than their L2, then the L1 lexicon should be inhibited more than the L2. 
Overcoming the strong inhibition of L1 when switching back into it 
should take time. However, less inhibition needs to be overcome when 
switching into L2. This should lead to asymmetrical switch costs 
([RTL1Switch − RTL1Stay] > [RTL2Switch − RTL2Stay]). In some studies, this is 
what has been found (e.g., Meuter & Allport, 1999). However, other 
studies have found symmetrical switch costs combined with reverse 
dominance effects (i.e., L1 naming is slower than L2 naming overall; 
Christoffels, Firk, & Schiller, 2007). 

In an ERP study, Verhoef et al. (2009) manipulated the time bi-
linguals had to prepare to switch languages. When bilinguals were given 
less time to use inhibition, the authors found asymmetric switch costs 
and smaller N2 amplitudes (a measure of inhibition) compared to when 
they were given ample time. They concluded that inhibition can be used, 
but is not always needed to control bilingual language production. 
However, when examining n-2 language repetition costs (a variant of 
the language switching paradigm), Declerck and Philipp (2018) argue 
that inhibition in trilingual language production cannot be explained 
without using inhibition. Additionally, Costa et al. (2006) proposed that 
less proficient bilinguals use an inhibitory mechanism which leads to 
asymmetrical switch costs, while proficient bilinguals use a non- 
inhibitory mechanism leading to symmetrical switch costs and reverse 
dominance effects. The idea that the need for inhibition changes over 
time is also supported by the results of Jacobs, Fricke, and Kroll (2016), 
who found that the amount of cross-language activation may depend on 
a bilingual’s proficiency. However, Finkbeiner, Almeida, Janssen, and 
Caramazza (2006) have argued that asymmetrical switch costs are the 
result of using “bivalent stimuli” in experiments, and don’t reflect lan-
guage suppression. 

One of the unexpected findings when using the language switching 
paradigm was that reverse dominance effects were found with sym-
metrical switch costs. Costa et al. (2006) argue that it reflects a shift in 
selection threshholds, where bilinguals give preference to the non- 
dominant language in a switching task. However, the reverse domi-
nance effect was an unexpected finding. Christoffels et al. (2007) have 
proposed that reverse dominance effects reflect general L1 inhibition, 
and results from other studies support this idea. For example, Misra, 
Guo, Bobb, and Kroll (2012) suggest naming in L2 requires sustained 
inhibition of L1. After bilinguals named a block of pictures in L2, 
repetition priming was absent when naming a block of pictures in L1. 
However, the reverse was not true: naming an L1 block first did not 
eliminate repetition priming when later naming in L2. Additionally, 
there was a stronger N2 response when naming L1 blocks after L2 blocks 
but not the other way around. The authors argued that naming in L2 
requires inhibition of L1, and the inhibition persists when participants 
start naming in L1 (although see Branzi, Della Rosa, Canini, Costa, & 

Abutalebi, 2016; Wodniecka, Szewczyk, Kałamała, Mandera, & Durlik, 
2020, for different explanations). Declerck, Kleinman, and Gollan 
(2020) found reverse dominance effects are correlated with language 
balance, and concluded that inhibition best accounts for reverse domi-
nance effects. Kleinman and Gollan (2018) found that inhibition of L1 
accumulates over the course of a block, eventually causing reverse 
dominance effects on both stay and switch trials. Taken together, reverse 
dominance in switching tasks likely indicates that bilinguals use some 
form of inhibition when controlling languages. 

The switching paradigm has been extremely useful for understanding 
bilingual language control, and the evidence generally points to inhi-
bition being the mechanism bilinguals use. However, the results have 
been complex, and converging evidence is still needed. In a review of the 
switching paradigm, Bobb and Wodniecka (2013) state that “other 
paradigms need to be developed to assess the relative contribution of 
inhibition to bilingual language control (p.582).” Fortunately, exam-
ining semantic effects presents another way to test for inhibition. There 
are a few studies that examine such effects, but we argue they may have 
confounded long term incremental learning effects with spreading 
activation effects. We deal with these issues in the next two sections. 

An alternative to the language switching paradigm 

Although several studies have examined language switch costs, few 
studies (if any) have looked at whether spreading activation effects are 
eliminated after a language switch. Inhibitory and non-inhibitory 
models make different predictions about what happens to the residual 
spreading activation in the lexicon of the non-target language. To get a 
feel for how they differ, we will briefly discuss the idea of activation flow 
and language selectivity during speech production (for a thorough re-
view, see Costa, 2005). 

There are at least three general levels involved in speech production: 
concepts/semantics, lexicon, and sounds (e.g., Caramazza, 1997; Levelt, 
Roelofs, & Meyer, 1999). For the most part, inhibitory and non- 
inhibitory bilingual models agree that conceptual information acti-
vates both languages during the initial stages of speech production 
(although see Costa, Pannunzi, Deco, & Pickering, 2017, for a competing 
view). The activation flows from the semantic network to both lexicons 
(e.g., Costa, Miozzo, & Caramazza, 1999; Dijkstra et al., 2019; Hermans, 
Bongaerts, De Bot, & Schreuder, 1998; Kheder & Kaan, 2019; Santes-
teban & Schwieter, 2019). The target word is then chosen from the 
lexicon. How that happens is where the two theories diverge. 

Even though both languages seem to be active, non-inhibitory 
models generally assume that lexical selection is language-specific. 
Output is controlled by a system that knows what the intended lan-
guage is without needing inhibition. As Costa (2005, p.313) states, the 
lexical selection mechanism is “blind to the activation levels of the 
lexical nodes belonging to the nonresponse language… [and] the level of 
activation of the target’s translation would be irrelevant for the target’s 
selection.” For example, if an English-Spanish bilingual intends to say 
the word dog, conceptual nodes spread activation to both dog in the 
English lexicon and to perro in the Spanish lexicon. With no inhibition of 
the non-target language, activation can theoretically build up over 
several trials in both lexicons simultaneously. If this is true, spreading 
activation effects should be unaffected over the course of a picture- 
naming experiment because there is nothing to counteract the 
increasing activation. 

This process is different for inhibitory models. In such models, lexical 
selection is language-non-specific and activation of the non-target lan-
guage must be controlled somehow: after activation flows to both lexi-
cons, the non-target language activation levels act as distractors for the 
target language. To mitigate this, inhibition is applied to the language 
not in use. Thus, spreading activation in the non-target language can not 
build up over the course of a picture-naming experiment. Conversely, if 
there is a language switch, then the previously activated language gets 
inhibited. Thus, spreading activation effects are abolished after a 
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language switch. This was an explicit prediction made by Green (1998), 

The controlling schema [can…] reactively inhibit competitors in the 
non-target language. However, if there is a change of language then 
any lemmas in the previously active language will become inhibited 
[…] This should lead to the abolition of both cross-language and within- 
language competitor priming [emphasis added]. (p.75) 

Consider, for example, an English-Spanish bilingual naming a block 
of pictures in English that are all semantically related (e.g., mammals). 
Suppose the first picture is a dog, the second is rabbit and the third cow. 
Reasoning on the basis of monolingual studies (e.g., Navarrete, Mahon, 
& Caramazza, 2010; Navarrete, Del Prato, & Mahon, 2012; Navarrete, 
Prato, Peressotti, & Mahon, 2014), naming might grow faster on average 
with each successive stimulus. According to inhibitory models, this 
priming (due to putative spreading activation) should be eliminated 
after a bilingual participant switches languages (i.e., the bilingual 
naming cat in Spanish; gato). Theoretically, it would not matter if the 
stimulus after the switch was in the same semantic category or in a 
different one. The facilitation should be abolished. On the other hand, a 
non-inhibitory model would predict the facilitation to continue even 
after a language switch because “lexical selection is achieved by a sys-
tem that does not require the active inhibition of the lexicon-not-in-use” 
(Costa & Caramazza, 1999, p. 232). 

To date, we are unaware of bilingual studies that have looked at 
naming latencies on a trial by trial basis while manipulating semantic 
neighbors (i.e., naming semantically related stimuli serially). There have 
been a few bilingual control studies that examine how language 
switching affects naming latencies of semantically related stimuli, but 
those studies did not present semantically-related stimuli one after 
another. Rather, semantically-related stimuli were separated by filler 
trials. We argue that filler trials introduce potential confounds through 
long-term learning effects. We address those confounds in the section 
Within-Language Lexical Access: Do Lexical Entries Compete for selection? 
Implications for Bilingual Lexical Access. 

The continuous naming paradigm: incremental learning effects or a lack of 
inhibition? 

Sometimes, monolingual studies have tried to examine within- 
language competition during speech production using the continuous 
naming paradigm. Under the continuous naming paradigm, participants 
name stimuli from several semantic categories. The stimuli are pre-
sented so that pictures of a similar semantic category are never pre-
sented one after another. Naming latencies for semantically-related 
trials tend to increase by 10–30 ms with each presentation of a semantic 
neighbor (e.g., Damian & Als, 2005). This increase has been termed 
cumulative semantic interference (i.e., CSI). 

Initially, researchers thought that semantic activation persists over 
time, creating interference. For example, Wheeldon and Monsell (1994) 
found that when a semantic prime was presented before a stimulus, 
naming latency was longer compared to an unprimed stimulus. Inter-
estingly, short lags produced less inhibition than longer lags. They 
explained this result by proposing two types of activation during speech 
production. The first occurs within the semantic network and is rela-
tively short-lived. It has a small facilitatory effect. The second occurs at 
the lexical level and has a stronger inhibitory effect. This led to the idea 
that activation builds up over time in the lexicon and that semantic 
neighbors compete for selection. CSI was thought to be a reflection of 
this. 

However, such an explanation has been questioned in more recent 
experiments because the number of filler trials does not affect the 
magnitude of the cumulative semantic interference (Howard, Nickels, 
Coltheart, & Cole-Virtue, 2006; Navarrete et al., 2010). One might 
expect the residual activation to dissipate after several filler trials. 
Additionally, Navarrete et al. (2012) found facilitatory effects trial by 

trial when participants named semantic neighbors without filler trials, 
but interference effects when filler trials were introduced. Critically, 
when there were no filler trials between semantic neighbors, each suc-
cessive trial was named faster than the previous trial. Based on the 
Wheeldon and Monsell (1994) results, one would expect interference 
after the second or third presentation of a semantic neighbor. It seems 
unlikely that CSI is the result of persisting activation. Rather, incre-
mental learning is a more likely candidate. 

Incremental learning is an idea inspired by neural network models 
(e.g., Oppenheim, Dell, & Schwartz, 2010). Within the context of lexical 
access, it posits that connections between semantic and lexical nodes are 
constantly updated, albeit incrementally. When a picture is presented (e. 
g., dog), and a participant names it, the neural connections between the 
concept and word become strengthened. This strengthening is long 
lasting, and is different than just temporary activation. When the picture 
is presented a second time later on in an experiment, the word is 
retrieved more quickly. This type of facilitation is commonly referred to 
as repetition priming, but according to incremental learning, it is a 
function of memory, not activation. There is a cost associated with this 
incremental learning. After the picture is named, the connections be-
tween the target word and the semantic network get stronger, but the 
trade-off is that the connections between semantically-related neighbors 
and the semantic network become weaker. For example, naming a pic-
ture of a bat will strengthen the connections between bat’s conceptual 
and lexical nodes, but it will weaken the connections between whale’s 
conceptual and lexical nodes. When whale must be named, it takes 
longer to retrieve it from the lexicon due to the weakened connections. 
However, at the end of the trial, whale’s connections are strengthened, 
and its neighbors’ are further weakened. When a third neighbor (e.g., 
dog) is named, naming takes even longer than it did for whale. If incre-
mental learning is what is responsible for the cumulative semantic 
interference in bilingual naming experiments using variants of the 
continuous naming paradigm, then claims about inhibition and/or 
spreading activation should be met with skepticism. 

Within-language lexical access: do lexical entries compete for selection? 
Implications for bilingual lexical access 

Evidence that lexical entries compete for selection within a language 
comes from a few different experimental approaches. The first source of 
evidence comes from the continuous naming paradigm (the CSI effects 
discussed previously) the second source is from distractor tasks, and the 
third is from the blocked-naming paradigm. 

We should note that conclusions from all three experimental 
methods have been challenged with respect to whether competition 
exists during lexical access. We think those challenges are important, 
and they bring up potential issues with construct validity. We have 
briefly discussed whether CSI effects under the continuous naming 
paradigm reflect competition or incremental learning. We now turn our 
attention to distractor tasks and the blocked-naming paradigm. 

Experiments that use distractor tasks (Damian & Bowers, 2003; 
Hermans et al., 1998) have participants name pictures while a distractor 
word is presented orally or visually. If semantic neighbors compete at 
the lexical stage, then artificially increasing the activation of a seman-
tically related distractor (e.g., through semantic relatedness) should 
increase naming latencies of a target word. This seems to be the case. For 
example, a distractor like mouse slows naming of semantically related 
target like dog compared to an unrelated target like airplane. The in-
crease in naming latency has been attributed to competition between 
lexical entries. 

This explanation is supported by results of Shitova, Roelofs, Schrie-
fers, Bastiaansen, and Schoffelen (2016). They compared a Stroop task 
to a picture word inteference task, a type of distractor task. The authors 
wanted to determine when exactly the interference happens in picture- 
word interference tasks. The authors argued that if the interference 
happens during the word planning stage, then an N400 wave should be 
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observed in picture-word interference tasks (i.e., negativity 400 ms after 
stimulus onset; this is the time that lexical selection is thought to 
happen). That is what they found: a similar N400 for both the Stroop and 
Picture Word Interference tasks. The authors concluded that the nega-
tive ERP found for the incongruent stimuli and semantically related 
distractors arises during the word-planning stage. 

Distractor tasks have been important for understanding how the 
lexical and semantic networks connect. However, there are potential 
pitfalls when using them to make conclusions about lexical competition. 
For example, in picture word interference tasks, participants name a 
picture stimulus while trying to ignore a distractor word presented at the 
same time. In general, semantically related words slow naming 
compared to semantically unrelated words. But how much of this is due 
to competition within the lexicon vs. inhibition from another process? A 
semantic distractor may share visual features with the target. As the 
participant reads the distractor word, those visual features are also 
activated. This activation happens in bottom-up fashion (i.e., the dis-
tractor is exogenous to the participant), and must be ignored/inhibited. 
The process may not reflect normal lexical access. 

The forgoing suggests it may be informative to compare such a 
procedure with a flanker task (Eriksen & Eriksen, 1974) where a target 
stimulus (e.g., an arrow) is flanked by visually similar distractor stimuli 
(e.g., arrows pointing in the opposite direction). In picture-word inter-
ference tasks, semantically related distractors take on the role of the 
incongruent flankers, and the “competition” found in such experiments 
is taken as an inverse measure of attentional filtering or inhibition, as in 
classical Flanker logic. Using this procedure, Dell’Acqua et al. (2010, p. 
8) found that the target stimulus “initiates ultra-fast access to semantic 
representations,” which then influences the orthographic processing of 
the distractor word. Additionally, if words compete within the lexicon, 
then semantically near distractors (e.g., zebra) should produce more 
interference with a target (e.g., horse) compared to a semantically 
distant distractor (e.g., whale). However, Mahon, Costa, Peterson, Var-
gas, and Caramazza (2007) found the opposite pattern of results, and 
they concluded that lexical selection among monolinguals is non- 
competitive. These considerations make it difficult to identify the 
locus of competition in distractor tasks. 

The third and final source of evidence is the blocked naming para-
digm. This paradigm has similar methodology to the continuous naming 
paradigm. Under the blocked naming paradigm, participants name 
stimuli one after another in semantically related or semantically unre-
lated blocks. Depending on the experiment, words sometimes repeat 
within a block. Sometimes semantically related blocks contain stimuli 
from more than one category. Usually, care is taken to make sure un-
related blocks have no stimuli from the same category. For example, 
Damian, Vigliocco, and Levelt (2001) used 25 pictures from 5 semantic 
categories. In related blocks, 5 stimuli from the same category were 
named multiple times. In unrelated blocks, 5 stimuli from different 
categories were named multiple times. Kroll and Stewart (1994) were 
among the first to use this paradigm. Their results showed faster naming 
latencies in unrelated blocks compared to related blocks. This result is 
consistent with the idea that lexical entries compete for selection. The 
logic being that in related blocks, the activation from previously named 
semantic neighbors makes it more difficult to name the current stimulus. 

However, Navarrete et al. (2014) have argued that blocked naming 
studies do not account for incremental learning effects. More specif-
ically, they take issue with the fact that blocked naming studies often 
repeat stimuli more than once per block (e.g., Damian et al., 2001). 
According to theories of incremental learning, repeating a stimulus 
strengthens the stimulus’ connections to the semantic network and 
causes repetition priming. However, such repetition also has the unin-
tended consequence of weakening the connections of semantic neigh-
bors. In a block of related stimuli, this weakening is a problem and will 
increase overall reaction times when semantic neighbors are named. In 
an unrelated block, this is not a problem: semantic neighbors with 
weakened connections are never named. In fact, because stimuli are 

repeated more than once, unrelated blocks receive an overall benefit 
from repetition priming. According to Navarrete et al. (2014), related 
blocks are slower because of these weakened connections, not because of 
competition/interference. Other studies have also pointed to incre-
mental learning as the cause of semantic interference in monolingual 
studies (e.g., Damian & Als, 2005; Navarrete et al., 2012). Our perusal of 
the prior literature reviewed thus far suggests to us there are at least 3 
options for providing a clear and decisive test of the inhibitory and non- 
inhibitory models. 

In this section, we have explored three influential and useful 
experimental methods that examine whether lexical entries compete for 
selection. There are three potential confounding effects that may lead to 
an incorrect conclusion that competition exists in the lexicon: effects 
related to (1) attention, (2) weakening of semantic connections due to 
incremental learning and (3) strengthening of semantic connections due 
to incremental learning. 

Specifically, To eliminate attentional effects (1), one should choose a 
task that is free of verbal distractors within a trial. To mitigate incre-
mental learning effects that weaken connections (2), one should present 
semantically related stimuli serially one after another. Doing so gives 
spreading activation the best chance for n-1 to affect trial n before the 
residual activation decays. To mitigate incremental learning effects that 
both strengthen and weaken connections (2 and 3), one should control 
for repetition effects. One way to do this is not repeat a stimulus in the 
experiment until all other stimuli have been named. Effects from in-
cremental learning should be canceled out (i.e., all semantic neighbors 
connections have been strengthened and weakened equally). For 
example, Navarrete et al. (2014) divided stimuli in half for unrelated 
and related blocks and counterbalanced their presentation across par-
ticipants. Another option is to alternate between unrelated and related 
sub-blocks while not repeating a stimulus in the experiment until all 
have been presented. We chose the latter option. Either way, this should 
prevent stimuli within an unrelated block from benefiting from repeti-
tion priming (i.e., within a block, there is no repetition). 

The question naturally arises: Do these three potential confounding 
effects also apply to bilingual production studies? The answer is most 
certainly yes. For example, Kleinman and Gollan (2018) observed 
repetition priming in a bilingual switching experiment.2 Additionally, 
three bilingual control experiments have used a paradigm similar to 
continuous naming in order to test for inhibition (Lee & Williams, 2001; 
Hong & Macwhinney, 2011; Runnqvist, Strijkers, Alario, & Costa, 
2012), but some of their results can be explained by incremental 
learning effects. 

For example, Lee and Williams (2001) had participants name target 
words after a language switch in English or French. Before filler trials, 
targets were either primed or unprimed. In primed sequences followed 
by a language switch (e.g., snow [English prime], cinema [English filler], 
toit[French filler], rain [English target]), target words were named at 
similar speeds as unprimed sequences with a language switch (e.g., heart 
[English non-prime], cinema [English filler], toit[French filler], rain [English 
target]). However, if the sequence was primed without a language switch 
(e.g., snow [English prime], cinema [English filler], roof [English filler], rain 
[English target]), naming of the target slowed down. Lee and Williams 
(2001) argued that switching languages abolishes semantic interference 
because inhibition suppresses activation of semantic competitors. Hong 
and Macwhinney (2011) tried to extend these results to Chinese-English 
bilinguals. For fluent bilinguals, they did not replicate the results of Lee 
and Williams (2001), and switching languages did not abolish semantic 
interference effects. 

In a series of experiments, Runnqvist et al. (2012) found that 

2 Kleinman and Gollan (2018) argue that the L2 repetition priming they 
found was caused by a lack of inhibition compared to L1, but they acknowleged 
that some of their results could be due to incremental learning and proposed 
further research to work out the details. 
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switching languages did not affect semantic interference when naming 
under the continuous naming paradigm. In one of their experiments, 
participants named semantically related stimuli separated by filler trails 
in one language only (e.g., car followed by two filler items in the same 
language, airplane, two fillers, bus etc.). With each presentation of a 
semantic neighbor, interference increased by about 12 ms (e.g., naming 
airplane took 12 ms longer than naming car; naming bus took 12 ms 
longer than naming airplane). In another experiment, the filler items 
were in another language, forcing participants to switch languages. The 
interference pattern was the same: with each semantic presentation, 
naming latencies increased 12 ms. There was no interaction between 
language switching and experiment. This was true for both L1 and L2, 
and the authors concluded that bilinguals do not use inhibition to con-
trol language output. 

The three studies assumed, based on Wheeldon and Monsell (1994), 
that a prime stimulus stays active for some time after it is named. If true, 
then the long lasting activation can affect a target long after it is named. 
The activation is also sensitive to inhibition. If bilinguals use inhibition 
when controlling language output, then a language switch should 
abolish activation associated with the prime stimulus. 

We are worried that testing for cumulative semantic interference 
using the continuous naming in these three studies does not elicit ever- 
increasing spreading activation that stays elevated for “some time” 
(Runnqvist et al., 2012, p. 851). Rather, the CSI is due to an incremental 
learning mechanism. As initially proposed by Collins and Loftus (1975), 
it was assumed that spreading activation decays over time. This decay 
should reduce cumulative interference when semantically related 
neighbors are separated by filler trials. This does not seem to happen in 
experiments with monolinguals or bilinguals. But, if the cumulative 
interference is the result of trade-offs associated with incremental 
learning, then inhibition caused by a language switch would have no 
effect on the observed increase of reaction times. In other words, a 
different method is needed that examines priming over a short time (i.e., 
naming semantic neighbors without filler trials). 

The current study 

Because of the inconsistent results obtained with the language 
switching paradigm (see Bobb & Wodniecka, 2013), and the potential 
confounds from semantic competitor studies (Lee & Williams, 2001; 
Hong & Macwhinney, 2011; Runnqvist et al., 2012), we suspect that 
modifying the methods of the blocked naming paradigm may provide 
more diagnostic tests of inhibitory control accounts. To make clear 
predictions, we instantiated two models of bilingual language control to 
understand how reaction times might change trial by trial in a picture- 
naming experiment. One of the models assumes that inhibition is 
used, while the other does not. Consistent with the bilingual literature, 
both models assume competition exists within a language. However, 
only the Inhibitory Model assumes competition between languages. We 
use the models to simulate reaction times over two types of sub-blocks: 
semantically uniform and semantically mixed. Semantically mixed 
blocks are analogous to unrelated blocks. Semantically uniform blocks 
are analogous to semantically related blocks. In the semantically uni-
form blocks, naming latencies of six semantically related stimuli are 
estimated. The first three trials are stay trials, trials four and five are 
switch trials, while trial six is also a stay trial. Semantically mixed blocks 
are identical in terms of trial type (i.e., stay/switch), and semantic 
relatedness on trials one through four. However, the semantic category 
changes on trial five. Comparisons on trials five and six between the 
mixed and uniform sub-blocks should help explain whether switching 
languages abolishes semantic interference effects. Additionally, it is 
assumed that a stimulus is never repeated until all other stimuli have 
been named. Thus, the overall design is similar to the blocked naming 
paradigm with three exceptions: (1) Mixed sub-blocks contain seman-
tically related stimuli to produce spreading activation effects that can be 
influenced by language switching, (2) reaction times are analyzed trial 

by trial within a sub-block (not averaged by sub-block) and (3) repeti-
tion effects are controlled for. The models were derived in order to make 
concrete, a priori predictions, and estimate the magnitude of semantic 
interference effects due to spreading activation. 

The predictions of the two models were tested in Experiment 1. For 
example, if there is no difference in naming latencies after a language 
switch between the semantically mixed and semantically uniform blocks 
(i.e., on trial five of a sub-block), then this would indicate inhibition is 
used by bilinguals to control language output. However, if naming la-
tencies after a language switch are longer during semantically uniform 
blocks compared to mixed blocks, this would indicate inhibition is not 
used. Note that Experiment 1 controlled for the possible confounds 
mentioned in the previous section. There were no distractor items to 
control for attention effects. To mitigate incremental learning effects, 
stimuli in the experiment did not repeat until all other stimuli had been 
named, and there were no filler trials between semantic neighbors in 
order to allow semantic activation to spread before it decays. Addi-
tionally, we primed each target with four semantically-related neighbors 
(three stay followed by one switch). If the conclusions of Wheeldon and 
Monsell (1994) are correct, then it may take “ a delay of only 3–4 s” for 
the competition in the lexicon to offset and overpower the transitory 
facilitation from the semantic network (p.345). Any facilitation seen in 
the second prime should be counteracted by the presentation of the third 
prime. 

For the second experiment, we thought it was important to replicate 
results from the continuous naming paradigm. Consider, for example, 
the possibility in Experiment 1 that there is no difference in naming 
latencies between mixed and uniform blocks after a language switch. 
This would provide evidence that bilinguals use inhibition when 
switching languages. But, one might argue that the stimuli used in the 
current study were flawed (e.g., the stimuli in this study were not suf-
ficiently related to produce interference). We therefore conducted the 
second experiment where the same stimuli were used, but this time 
semantically related pictures were separated by filler trials (i.e., stimuli 
from other semantic categories). If, with each presentation of a semantic 
neighbor, naming latencies increase even after a language switch, then 
this would indicate that the stimuli were sufficiently related to produce 
semantic interference. Additionally, if in Experiment 1, no difference is 
found between uniform and mixed blocks after a language switch, but in 
Experiment 2 semantic interference is found, this would strongly sup-
port the idea that the semantic interference found in the continuous 
naming paradigm is the result of incremental learning, not spreading 
activation. 

Deriving quantitative predictions from the inhibitory and non- 
inhibitory accounts 

Because there have been inconsistencies in the literature in trying to 
determine whether bilingual speakers rely on inhibition to control lan-
guage output using switch costs, we have chosen to examine another 
aspect of bilingual language control: how language switching affects 
spreading activation. To derive predictions a priori, two computational 
models were developed: one that assumes inhibition, and one that does 
not. The former is inspired by the Inhibitory Control Model (Green, 
1998). We refer to this as the Inhibitory Model. The second is based on 
research by Costa and colleagues (Costa & Caramazza, 1999; Costa & 
Santesteban, 2004; Costa et al., 2006). We refer to this as the Non- 
Inhibitory Model. 

Both models are structurally similar. They are partly inspired by the 
Dual Route Cascaded Model (DRC; Coltheart, Rastle, Perry, Langdon, & 
Ziegler, 2001) in that the model architecture has been specified be-
forehand rather than using a learning algorithm (e.g., backpropogation). 
Because of this, specific predictions based on the models were made a 
priori before the experiments were conducted, which allowed for clear 
predictions based on the verbal theories. 

Both models use three inputs to estimate naming latencies trial by 
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trial. Those inputs are language (L1 or L2), type of trial (SWITCH or 
STAY) and semantic relatedness of trial n to trial n-1 (TRUE or FALSE). 
On a trial, a target word receives activation from the semantic network.3 

Once the target word’s activation reaches some threshold that is greater 
than its distractors, it is chosen. Its activation (and the distractors’ ac-
tivations) then decays and the next trial starts. Notice that two of the 
three inputs (i.e., type of trial and semantic relatedness) for a given trial 
rely on characteristics of the previous trial. For example, if the current 
trial was in the same semantic category as the previous trial, then the 
semantic-relatedness input would be set to true. This tells the model that 
any residual activation from the previous trial affects the current trial. In 
this way, effects of spreading activation (or lack of it) can be accounted 
for. This will be explained partially in later sections entitled The Inhib-
itory Model and The Non-Inhibitory Model. 

General modeling approach 

We begin by making the fewest assumptions possible in deriving a 
general model which can be easily adapted to instantiate the inhibitory 
and non-inhibitory accounts. We start by assuming, as the verbal ac-
counts do, that performance latencies reflect changes in activation over 
time within a lemma, with these changes influenced by inputs from the 
semantic network. Then simple expressions for activation a(t) in the 
lemma and input σ(t) from the semantic network can be written down as 
follows: 

da
dt

+ c0a(t) = pf (t)

dσ
dt

+ c0σ(t) = f (t)
(1) 

This system states that the change in activation over time (da
dt) in a 

lemma beyond its prior or resting level is due to a positive contribution 
proportional (p) to its input from the semantic network (expressed as a 
function of time or f(t)) as well as a negative contribution (c0̃a(t)) 
representing decay and/or inhibitory loss proportional ( − c0) to the 
prior or resting level activation (a(t)). A suitable and relatively uncon-
troversial choice can also be made for the form of the activation function 
σ(t), the sigmoid, in which case the second equation is absorbed into the 
first. Regrouping terms we have 

da = − c0(a(t) − pσ(t))dt + pdσ (2)  

This is a simple linear first-order ordinary differential equation, which 
can be solved using an integrating factor: 

a(t) = e− c0 t
∫

pf (t)ec0 tdt + ce− c0 t

= pe− c0 t
∫ (

c0ec0 t

1 + e− t −
ec0 t− t

(1 + e− t)
2

)

dt + ce− c0 t

= pe− c0 t ec0 t

1 + e− t + ce− c0 t

= ce− c0 t + p
1

1 + e− t

(3) 

The final equation shows that activation of a lemma at a given time 
point (a(t)) is equal to the amount of inhibition applied to a lemma 
(ce− c0 t) plus the amount of activation from the semantic network (p 1

1+e− t) 
where p controls the proportion of total activation the lemma receives. 
In what follows, we use this basic functional form as a skeleton for 
instantiation of the Inhibitory and Non-Inhibitory models. 

The inhibitory model 

The Inhibitory Model tries to represent activations of a target word, 
its semantic neighbors, and unrelated words on both stay and switch 
trials. The total activation of a word (aj,k,l,m) is calculated by adding 
activation from the semantic network, or removing activation through 
decay or inhibition. The subscripts j, k, l and m stand for type of trial (j; 
stay [j = 1], switch [j = 2]), type of word (k; target [k = 1], previous 
target [k = 2], and other distractors [k = 3]), language (l; dominant 
language [l = 1], non-dominant language [l = 2]), and m refers to 
whether the word is in the intended language or unintended language 
(intended [m = 1], unintended [m = 0]). The following equation is used 
to calculate a word’s activation level on stay trials at any given point in 
time: 

a1,k,l,m = a0e− ∊hlt + pk,m
1

1 + Lj,le− t (4)  

where a0 represents a word’s initial activation at the beginning of a trial, 
t represents the total time activation is applied to a word, hl is an inhi-
bition parameter whose value depends on the relative strength of a bi-
lingual’s language, and p represents the proportion of activation a word 
receives from the semantic network based on whether the word is a 
target and in the intended language. Target words in the intended lan-
guage receive most of the activation (i.e., p1,1=0.75 or 75%). Distractors 
in the intended language split the remaining activation. Distractors in 
the unintended language receive no activation (e.g., p1,2=0). This is a 
simplifying assumption. It is unlikely the non-target language receives 
no activation. However, inhibitory models do assume that the net effect 
is inhibition. This assumption ensures activation decreases and that 
“lemmas in the previously active language [become] inhibited” in order 
to “[abolish] both cross-language and within-language competitor 
priming” (Green, 1998, p.75). ∊ determines whether the word is 
inhibited on a given trial. Specifically, ∊ is set equal to 1-m, and the 
exponential acts as an indicator, turning off the inhibitory coefficient 
when the word is in the intended language (m = 1), and turning it on if 
the word is in the unintended language (m = 0). L determines the rate at 
which a word receives activation from the semantic network. The larger 
L is, the slower the rate of activation. We assume that the rate a word 
receives activation is independent of inhibition. For example, L2 words 
could receive activation at a slower rate because their connections to the 
semantic network are weaker, and not because inhibition is being 
applied to them. We conceptualize the L parameter as an activation 
parameter and not an inhibition parameter. 

Inhibition is controlled by the p parameter and the e− ∊ht portion of 
the equation. Note that for words in the intended language (i.e., when 
∊=0), there is no inhibition (i.e., e0 leaves only a0in the left term of RHS 
of the activation equation), and activation from the semantic network is 
added to the initial activation at the beginning of the trial. Conversely, 
words in the unintended language receive no activation (i.e., pk,1=0) 
from the semantic network, but they are inhibited based on their initial 
activation levels at the start of the trial. On switch trials, inhibition of the 
non-target language occurs in parallel with activation of the target 
language, but only after the target language has been reactivated. This 
means that the language activation parameters must be stronger than in 
a non-inhibitory model to reactivate the target language. Theoretically, 
the more proficient a bilingual is, the more activation they need to 
remain efficient. These simulations show that strong activation is also 
needed to offset strong inhibition. 

Consistent with previous experimental results, it is also assumed that 
the non-target language remains inhibited until a language switch 
(Misra et al., 2012). In other words, the model assumes that there is 
global inhibition of the non-target language. 

The Inhibitory Model assumes a fully competitive system, both be-
tween and within languages. In order for the target word to be chosen on 
a stay trial, its activation level must be some ratio (V; the competition 

3 The model makes no claims about the semantic network’s structure (e.g., 
whether it is decompositional or non-decompositional) 
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parameter) of the sum of all other distractor activations in both lan-
guages. In other words, for a target to “win” its activation must be 
greater than or equal to a fraction V of the sum of all the activations for 
the distractors in the target language plus the sum of the activations for 
all the translated words in the non-target language. Denoting a partic-
ular combination of conditions on the target activation subscripts as x 
and that of all other non-target words as d, this response rule can be 
written 

V⩽
ax

∑
ad

(5)  

which amounts to another fairly uncontroversial and widely-used de-
cision function in mathematical modeling, the Luce ratio decision cri-
terion. 4 

Once V is less than or equal to the ratio of the target word and the 
sum of the distractors, the target is selected. Until this happens, acti-
vation or inhibition is applied to each word. If V = 0.50, then one can 
calculate the time needed by replacing ax and 

∑
ad with their respective 

equations, and solve for t. t is then converted to milliseconds and is 
added to a noise parameter. The noise parameter changes with each trial 
and is randomly selected from an ex-Gaussian distribution, which has 
three parameters: μ,σ, and τ (Luce, 1986). 

The target word and distractor activation levels then decay based on 
an exponential decay function. If the next trial’s stimulus is from the 
same semantic category as the current trial, then the initial activation 
levels of the next trial’s words are set to the final decayed activation of 
the current trial. If not, the activation levels reset to the initial activation 
of a language’s words on trial one of the simulation (this is the resting 
activation parameter, or Rl). This process allows spreading activation of 
semantically related trials to affect each other, while eliminating 
spreading activation once a semantic category changes. 

On switch trials, lexical selection happens in two steps. First, the 
intended language’s words must be reactivated. This is represented in 
the following equation by T0: 

T0,k,l,m = a0e− ∊hlts + ∊
− RlYl

et + 1
|
ts
0 (6)  

where the rate of reactivation (Y) depends on how strongly the intended 
language’s words were inhibited (h) and the overall strength of the 
language (L) on the previous trial. Thus, Y is proportional to the sum of 
the language strength parameter on stay trials plus the inhibition 
parameter (i.e., Y∝ Lh). ts is the switch cost, and represents how much 
time has passed in this reactivation stage. Once T0 is greater than or 
equal to R, the lexical selection stage begins and T0 acts like the initial 
activation a0. The equation then becomes 

a2,k,l,m = T0e− ∊hlts + pk,m
1

1 + Yle− t (7) 

t can then be calculated in a similar manner to how it is found in stay 
trials. However, in order to find the total time it takes to select a word on 
a switch trial, ts must be added to t. Then, it is added to the noise 
parameter. Note also, that the language strength parameter (L) has been 
replaced with the rate of reactivation parameter (Y). It is assumed that 
the rate of activation from the semantic network is still affected by in-
hibition, which is why Y is used instead of L. 

The non-inhibitory model 

The Non-Inhibitory Model is similar to the Inhibitory Model, with 
three major exceptions. First, there is no between-language competition 
(i.e., between L1 and L2), meaning inhibition is not needed. Thus, on 

both stay and switch trials, the total activation of a word is represented 
by the following equation: 

a1,k,l,m = a0 + pk,m
1

1 + Lj,le− t (8) 

Second, having no between-language competition also affects how 
words are selected: the denominator in the decision rule, Td, is now 
restricted to only the set of within-language competitors dw5: 

V⩽
ax

∑
adw

(9) 

Finally, on switch trials, there is no need to reactivate an inhibited 
language, and there is no inhibition parameter h. Switch costs are 
determined by manipulating the L parameter. L determines how fast a 
word receives activation from the semantic network. This then de-
termines how quickly the ratio between target word and distractors 
changes. To make the model more equivalent to the inhibitory model, 
the Lswitch parameter is also proportional to the Lstay parameter. This is 
also consistent with Costa et al. (2006), who argue that selection criteria 
threshholds are related to a bilingual’s proficiency in a language. 
Theoretically, one could manipulate the Lstay parameters to get reverse- 
dominance effects (i.e., making the L1, stay parameter larger than L1, switch 

would also increase the L1, switch parameter relative to the L2, switch, 
slowing naming for L1 in general), but that is beyond the scope of this 
study and was not tested here. 

A priori simulations to predict effect size 

Overview. Before gathering any data, simulations based on the pa-
rameters chosen a priori were conducted. This was done to constrain the 
models’ predictions and estimate effect size. Note, that after we gathered 
data in Experiment 1, we fit the models to the data. We report those 
results under the section titled Fitting the Models to the Data of Exp. 1. 
Two-hundred experiments were simulated for each model. Each simu-
lated experiment consisted of 40 “participants” naming 768 trials. Trials 
were grouped into two types of sub-blocks: mixed and uniform. Each 
sub-block type consisted of six trials. In uniform sub-blocks, all stimuli 
came from the same semantic category. In mixed sub-blocks, semantic 
category changed on Trial 5. All sub-blocks had the same trial type 
order: stay, stay, stay, switch, switch, stay. 

Because uniform sub-blocks are all semantically related, the Non- 
Inhibitory Model should predict that there will be semantic interfer-
ence on trials five and six, even after the language switches on trial four. 
However in mixed sub-blocks, changing semantic categories on trial five 
should abolish these effects. Thus, the Non-Inhibitory Model should 
predict longer naming latencies for uniform sub-blocks on trials five 
than for mixed sub-blocks. On the other hand, the Inhibitory Model 
should predict that inhibition applied to the non-target language on trial 
four will abolish interference effects on trials five during uniform sub- 
blocks. In other words, the Inhibitory Model should predict similar re-
action times on trials five and six for both mixed and uniform sub-blocks. 

It is assumed that noise in the model follows an ex-Gaussian distri-
bution, and each simulated participant was assigned a μ, σ, τ parameter. 
A random value from a participant’s distribution was selected each trial. 
Thus, random variation was added to reaction times based on an 
exponentially-driven distribution. 

Parameter Values. Parameter values were chosen by hand. Two con-
siderations were made when choosing parameter values. First, we 
wanted to be as faithful to the verbal theories as possible. Second, we 
wanted to make realistic predictions based on previous research. 

It should be noted that various combinations of parameter values can 
give similar results. Adding a new parameter (e.g., one related to inhi-
bition) often necessitates changes in other parameter values in order to 

4 Reordering the formula, shows the activation of the target relative to the 
distractors must be larger than the threshold value ax⩾V⋅

∑
ad 

5 Rearranging terms gives ax⩾V⋅
∑

ad 
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obtain the same numerical predictions. Therefore, we chose not to make 
the L1 and L2 parameters equal between the models because we wanted 
their architectures to remain true to the verbal theories they were built 
to instantiate. We then set the values to make reasonable predictions 
before gathering data. The problem with setting the parameter values 
between models exactly equivalent at this stage is that inhibition has a 
strong effect on the simulations because more activation is required to 
overcome inhibition and reach the threshold needed to name the pic-
ture. In other words, a model that contained all the parameter values of 
the non-inhibitory model and simply added inhibition on top would 
result in wildly different overall naming times, which would make the 
comparisons between the models’ predictions to the data more difficult 
to carry out. 

The language strength parameters on stay trials, Lstay, represent how 
quickly the target word or distractors receive activation from the se-
mantic network. The lower the number, the faster the word is activated. 
For the Inhibitory model, we chose 0.5 for L1 and 8 for L2 to capture the 
assumption that L1 is stronger than L2. 

The Non-Inhibitory model is more balanced (L1 = 6 and L2 = 8) for 
two reasons: (1) It has fewer competitors (i.e., no between-language 
distractors) and a value of 0.5 for L1 would cause lexical selection to 
happen too quickly without much interference and as initially proposed 
(2) Costa and colleagues theorized that balanced bilinguals are more 
likely to use a non-inhibitory mechanism to control language output.6 

We also assumed that very few bilinguals are completely “balanced,” so 
we made L1 slightly stronger. It should be noted that making the non- 
inhibitory model’s L1 and L2 parameters less balanced can still pro-
duce similar reaction times in the simulations. 

The fact that the language strength parameters are different across 
models and languages is theoretically driven. But, it actually has little 
influence on reactions times. The language strength parameters reflect 
how fast a word receives activation from the semantic network. Because 
the non-inhibitory model has fewer competitors, and the inhibitory 
model uses inhibition that happens in parallel with the activation on 
switch trials, the models can have relatively similar naming latencies. 
Both models can be equally efficient. Additionally, we assume that a 
larger language strength parameter does not necessarily mean inhibi-
tion. Many things can affect how fast the semantic network activates 
words, including the strength of the connection to the lexicon, the lexical 
selection mechanism etc. 

The next two parameters are the h parameters. These parameters are 
unique to the Inhibitory Model. They determine how quickly words in 
the non-target language are inhibited. Theoretically, this should happen 
quickly. The larger h is, the greater the inhibition. We chose the values 
2.5 and 1.5 for L1 and L2 respectively. Both accomplish the goal of quick 
inhibition. L1 is chosen to be greater because that is one of the main 
assumptions Green (1998) makes (i.e., more inhibition is applied to the 
stronger language). 

Next are the Y parameters. These parameters are also unique to the 
Inhibitory model. They determine how quickly a word is reactivated and 
activated after being inhibited. Y is thus analogous to the language 
strength parameter on stay trials. 

We assumed that the rate of reactivation is reflected in bilinguals’ 
naming latencies on stay trials, which is the core theoretical assumption 
in the literature. Additionally, latencies should depend on how much a 
language was inhibited. Paraphrasing Green (1998) the greater the in-
hibition that is applied to a language, the more effort it takes to over-
come that inhibition. 

Thus, we chose to set the reactivation parameter Y = Lh. Since this is 
in the bottom of the logistic equation, larger values of Y will reduce the 
rate at which a word is reactivated (i.e. the slope of the sigmoid). Thus, a 
bigger h (i.e., more inhibition) slows down the reactivation, as Green 

proposed. It also means that this is not a free parameter but is fully 
determined by the choice of L and h. 

The Lswitch parameters only apply to the Non-Inhibitory model. 
Mechanisms controlling language output in the model need time to carry 
out the operation. Like the Lstay parameter, the larger Lswitch is, the slower 
the rate at which a word is activated. Lswitch must be quite a bit larger 
than the Lstay parameters in order to create switch costs that are realistic 
(80–100 ms). After trial and error, these values were set to 40.5 and 54. 

The larger the c parameter is, the more rapidly word activations 
decay. c was set to 0.01 on the assumption that decay happens somewhat 
gradually over a couple thousand milliseconds. If c were too high, then 
there would be no interference from one trial to the next (i.e., all the 
activations would decay back to resting activation by the start of the 
next trial). To help guide this choice, we chose values that were slightly 
higher than the resting activation parameters (3.2–4.0), applied the 
decay function to them with various c values, and then plotted the decay 
functions over time to see what values of c appeared most reasonable. 
0.01 worked well in that it allowed activation from the previous trial to 
affect the current trial without causing too much interference. 

The resting activation parameter, R, captures what a word’s activa-
tion level should be in the absence of semantic input or inhibition. For 
simplicity we assume R is the same for all words (i.e., targets and dis-
tractors) within a language. 

We chose 3 for L1 and 1.5 for L2 to indicate that the first language is 
stronger than the second and should have greater resting activation. The 
chosen values are somewhat arbitrary, but they cannot be too big (i.e., 
10) because in such a case the target activation measured over time 
(based on the logistic function) would never become large enough to 
overcome the competition of the distractors. 

As mentioned earlier, the p parameter reflects the proportion of se-
mantic activation a word receives, and we started with the assumption 
that the target word gets the bulk of the activation. 75% strikes us as a 
reasonable, though somewhat arbitrary, starting assumption. But, 
because the Inhibitory model has more potential distractors, we 
increased the value to 80% to give the target a boost in that model. The 
other distractors split the remaining activation. 

To choose the value of the V parameter, it was necessary to consider 
what the words’ activation levels are (V = target activation/distractor 
activation). There are three main activations to focus on in this model: 
target, main distractor, and other distractor. In the Non-Inhibitory 
model, all 3 types of words start with roughly the same activation (≈3 
for each). If V = Target Activation/Distractor Activation, then at the 
very beginning of the trial V/D = 0.5(i.e.,3/(3 + 3)). 

Based on these initial values, and the values of the R and L, 0.566 
produced realistic interference effects within a language (≈20–25 ms 
with each presentation of a semantically related neighbor). 

This value was used to inform the Inhibitory model as well [V =

3/(3 + 3 + 1.5*3), where 1.5 is the initial activation of L2 distractors]. 
The inhibition and activation occur in parallel, and the between- 
language distractors’ activation levels quickly approach a fraction of 
their initial activation. Setting V to 0.565 gives similar interference re-
sults to the Non-Inhibitory model. It is not quite as large because the 
between-language distractors make it slightly more difficult for lexical 
selection to take place as V increases. 

Results. Averaged simulation results by trial of the Inhibitory and 
Non-Inhibitory Models can be found in Fig. 1 (left and middle panels). 
To analyze within-language semantic effects, regression analyses with 
trial number (one through three) as the independent variable were used 
to predict mean reaction times. For the Inhibitory Model, each subse-
quent trial significantly increased reaction times (β = 24.95, p < .01), 
indicating that semantic relatedness on the previous trial interfered with 
naming on the current trial. Similar results were found for the Non- 
Inhibitory Model, (β = 21.68, p < .01). 

The models make different predictions after a language switch. In 
order to determine if spreading activation interference effects were 6 Although Declerck and Philipp (2018) have found evidence that balanced 

bilinguals also use inhibition 
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abolished after a language switch, naming latencies of mixed and uni-
form sub-blocks were compared on trials five and six. For the Inhibitory 
Model on the fifth trial, (i.e., second switch trial), naming latencies in 
uniform sub-blocks (M = 1059, SD = 53.20) were 2 ms faster than 
naming latencies in mixed sub-blocks (M = 1061, SD = 54.31). In 
roughly 52% of the simulations on trial five, uniform sub-blocks were 
faster than mixed sub-blocks, χ2

1,N=200 = 0.16,p = 0.69, suggesting that 
there is truly an underlying null effect because approximately half the 
time the difference is in the opposite direction. On the sixth trials (i.e. a 
stay following a switch), naming latencies in uniform sub-blocks (M =

966, SD = 56.85) were 9.51 ms faster than naming latencies in mixed 
sub-blocks (M = 975,SD = 58.02). In 52% of the simulations or trial six, 
uniform sub-blocks were slower than mixed sub-blocks, χ2

1,N=200 = 0.16,
p = 0.69. The results indicate that the Inhibitory Model predicts very 
little, if any, difference between uniform or mixed sub-blocks for trials 
five and six. 

For the Non-Inhibitory Model on trial five, naming latencies in uni-
form blocks (M = 1358,SD = 63.74) were 134 ms slower than in mixed 
sub-blocks (M = 1223,SD = 66.12). In 92.5% of the simulations on trial 
five, uniform sub-blocks were slower than mixed sub-blocks, χ2

1,N=200 =

88.17,p < .001. On trial six, naming latencies in uniform blocks (M =

1220,SD = 62.42) were 68 ms slower than in mixed sub-blocks (M =

1152,SD = 62.42). In roughly 93% of the simulations on trial six, uni-
form sub-blocks were slower than mixed sub-blocks, χ2

1,N=200 = 36.73,
p < .001. The non-inhibitory computational model predicts naming la-
tencies to be longer on trials five and six for uniform sub-blocks than for 
mixed sub-blocks, and that there is a large effect size. In other words, 
spreading activation effects were not abolished after a language switch. 

Discussion. Computational modeling was used to make predictions 
based on two verbal theories of bilingual language control. As expected, 
language switching abolished semantic effects for the Inhibitory Model, 
but did not abolish semantic effects in the Non-Inhibitory Model. These 
predictions are useful for estimating effect sizes and interpreting 
experimental results. This, in turn, can help adjudicate between the two 
verbal theories. 

It should be noted that both computational models (and the verbal 

theories that they are based on) also predict within-language competi-
tive effects (i.e., that naming latencies should increase from trial one to 
two and two to three). However, it is not at all guaranteed that this is the 
case. Next, we report empirical tests of these predictions. 

Experiment 1 

To test the models’ predictions, we designed an experiment that tries 
to be as faithful as possible to the conditions imposed on the simulations. 
To date, we know of no studies that have tested how language switching 
affects spreading activation of semantically-related stimuli from one 
trial to the next. There have been at least three studies that examined 
naming latencies of semantically related trials separated by filler trials 
(Hong & Macwhinney, 2011; Lee & Williams, 2001; Runnqvist et al., 
2012). Because this experiment does not have filler trials (and eliminates 
the possibility of learning effects), it not only tests the models’ pre-
dictions, but also has broader theoretical implications for competition 
within language. For example, Navarrete et al. (2014) found facilitation 
when semantically related pictures were named one after another, but 
incremental learning effects once filler trials were introduced. We 
thought this was a possibility, but nonetheless we predicted within- 
language interference on stay trials mainly because (1) that is what 
the models predict when there is within-language competition and (2) it 
is common in many bilingual theories of speech production (e.g., the so- 
called Lexical Selection Mechanism; the Inhibitory Control Model, the 
Revised Hierarchical Model; Costa & Caramazza, 1999; Green, 1998; 
Kroll, Van Hell, Tokowicz, & Green, 2010). For example, Costa and 
Caramazza (1999, p. 232) assumed that “the ease with which a lexical 
node is selected depends on the activation level of competing lexical 
nodes.” If there was facilitation on stay trials, then we predicted that 
inhibition would eliminate those effects as well. 

Method 

Participants. 45 English-Spanish speaking bilingual participants (71% 
female; 73% rated English as their L1) were recruited through the Psy-
chology Department participant pool. One participant was removed due 

Fig. 1. Naming Latency a priori predictions for the Inhibitory Model (left), Non-Inhibitory Model (middle) and empirical data from Experiment 1 (right). Trials 1-6 
were normalized by subtracting the naming latency from Trial 1 from each trial. In panel c, the only significant difference between mixed and uniform sub-blocks 
occurred on Trial 6. 
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to failure to meet the requirements of the study. Additionally, three 
participants failed to complete all experimental blocks due to computer 
error or time constraints. In line with the literature on bilingual lan-
guage production and comprehension (Caramazza, 1997; Linck et al., 
2012; Meuter & Allport, 1999; Moreno, Federmeier, & Kutas, 2002), 
subjective questionnaires regarding their age of acquisition as well as 
self-ratings of their reading, writing and speaking ability of their lan-
guages were assessed using Likert scales. In addition, participants were 
given a more objective vocabulary measure, the Multilingual Naming 
Test (MINT; Gollan, Weissberger, Runnqvist, Montoya, & Cera, 2012), 
first in English and then in Spanish. The participants’ MINT scores were 
used to determine L1 and L2 in the statistical analyses. If there was a tie, 
then their self-ratings were used. Twenty-six participants scored higher 
on the English portion of MINT, twelve scored higher on the Spanish 
portion, and 7 scored equally well on both portions. See Table 1 for 
information on participants’ self-ratings of language ability and results 
of the Multilingual Naming Test (i.e., means and standard deviations). 

Stimuli. 600 × 600 pixel color photographs from eight semantic 
categories were used as stimuli (6 pictures per category). The categories 
were birds, body parts, clothes, fruits, furniture, musical instruments, vehi-
cles and weapons. Each stimulus was associated with a word to be named 
in the experiment. Between languages, words were controlled for in 
terms of word frequency, familiarity and prototypicality. Word fre-
quency information for the picture names was taken from the Corpus of 
Contemporary English (COCA; Davies, 2017b) and Corpus del Español 
(Davies, 2017a). Familiarity and prototypicality ratings were taken from 
Schwanenflugel and Rey (1986). Care was taken to make sure none of 
the pictures had associative links (e.g., Lion-Tiger) by using the USF 
association norms (Nelson, McEvoy, & Schreiber, 2004). 

Apparatus. Stimuli were presented using OpenSesame software 
(Mathôt, Schreij, & Theeuwes, 2012) on lab computers (Dell Optiplex 
760). A microphone recorded participants’ responses in order to eval-
uate naming latencies. Naming latencies for each trial were measured by 
a virtual voice-key, and verified in Praat (Boersma, 2006) and R (R Core 
Team, 2014). 

Procedure. Stimuli were presented in the center of a 15 in. 1600 ×
900 pixel Dell computer screen. Participants were seated roughly 60 cm 
from the screen, with stimuli subtending a visual angle of roughly 10 
degrees. After participants were familiarized with the pictures and their 
corresponding names, they completed a practice session. During the 
practice session, participants named each of the stimuli twice on the 
computer screen: once in their L1 and once in L2. They then started the 
experiment. They were asked to name the pictures as quickly and 
accurately as possible. 

Language was cued based on the background color of the picture 
(grey or light blue), and background color was counterbalanced across 
participants. A single trial consisted of a fixation point, presentation of a 
stimulus and inter-stimulus interval. To make sure participants did not 
become accustomed to the timing of the pictures and consistent with 
other naming studies (e.g., Navarrete et al., 2014), the fixation point’s 
duration varied between 250 and 700 ms across trials based on a 

uniform distribution. The mean of the uniform distribution was 500 ms. 
Stimuli were presented on a screen until a participant responded or until 
3000 ms passed, whichever was shorter. A recording of the response 
started at the onset of the stimulus, and naming latencies were measured 
in milliseconds from the onset of the stimulus until the participant 
responded. Naming latencies were determined by a virtual voice-key. 
The inter-stimulus interval lasted 1500 ms after the participant 
responded. If a participant failed to respond within 3000 ms (i.e., a 
timeout), the program proceeded to the next trial. See Fig. 3 for a rep-
resentation of a single trial. See Fig. 2a for a representation of how Sub- 
Blocks differed. 

Participants named 768 trials in eight blocks. Each block contained 
96 trials: 48 trials were named in English, and 48 were named in 
Spanish. Within each block, pictures were grouped into sub-blocks. Each 
sub-block consisted of 6 trials. Sub-blocks were divided into two types: 
uniform and mixed. Both types of sub-blocks cued trials according to the 
same language pattern (i.e., stay, stay, stay, switch, switch, stay). 

In uniform sub-blocks, all trials came from the same semantic cate-
gory. In mixed sub-blocks, semantic category changed on trial five. Each 
sub-block had a major semantic category, from which its words were 
quasi-randomly ordered. Mixed sub-blocks had a major semantic cate-
gory (associated with the first 4 trials) and a minor semantic category 
(associated with the last two trials), with words from each being quasi- 
randomly selected. Picture stimuli were not repeated within a block 

Table 1 
Participants’ language proficiency in Exp 1.   

Language 

Measure L1 L2 

Self-Ratings   
Speaking (out of 7) 6.48 (0.7) 6.02 (0.8) 
Reading (out of 7) 6.67 (1.0) 5.5 (0.9) 
Writing (out of 7) 6.24 (1.2) 6.14 (1.0) 
Age of Acquisition 2.23 (3.3) 4.48 (6.1) 

MINT (% correct) 90 (10) 74 (13) 

Note: MINT scores were used to determine bilinguals’ L1 and L2 in statistical 
analyses. The L1 determined by the MINT scores may not necessarily correspond 
with participants’ self ratings. 

Fig. 2. Examples for How Semantically-Related Stimuli Were Presented in Exp. 
1 and 2. 
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until all pictures from that category had been named. Additionally, each 
trial number across the sub-blocks was controlled for in terms of pro-
totypicality, familiarity and word frequency. 

In total, each participant was presented with 8 blocks of trials. Each 
block consisted of 16 sub-blocks: eight uniform sub-blocks and eight 
mixed sub-blocks. Within each block, words were presented once in 
English and once in Spanish, and this was counterbalanced. Type of sub- 
block alternated. Additionally, type of sub-block presented first within a 
block alternated. The order of the blocks was presented to participants 
according to a Balanced Latin Square design. 

Results 

Descriptives. Descriptive statistics are given in each table for each 
statistical analysis7. However, a summary of the reaction time data as a 
function of sub-block type and trial within sub-block can be found in 
Fig. 1. 

Naming Latency Analyses on Trials 1-3. Naming latencies were 
analyzed using a Bayesian Hierarchical Model (BHM) using rjags8 

(Plummer, 2013). Trials 1-3 were analyzed separately from Trials 5-6. 
No analyses were conducted on Trial 4. The BHM assumes that reac-
tion times come from an ex-Gaussian distribution, and provide posterior 
distribution estimates of each independent variable’s effects on naming 
latencies in milliseconds. If 95% of the highest density interval (HDI) of 
the posterior distribution estimate does not include zero, then the effect 
is considered credible. The model can be used to estimate deflections (i. 
e., how much a condition is different from the grand mean in millisec-
onds) and mean differences. Deflection estimates are given in the tables. 
Mean differences are reported in the text. 

To analyze Trials 1-3, trial number (one, two, three) and language 
(L1, L2) were input as independent variables. Participant, language of 
the stimulus (English, Spanish) and stimulus were controlled for. Only 
trials that were less than 500 ms were removed. 1237 trials (7.8%) were 
excluded from the analysis due to participant error. Of these, 654 (4.1%) 
were due to timeouts, 151 (0.9%) were intrusion errors, 368 (2.3%) 
were incorrect but semantically related/correct language responses, and 
64 (<0.5%) were other errors (e.g., non-semantically related words, 
non-words, coughs etc.). A credible main effect of language was found. 
L1 trials were 13.21 ms slower than L2 trials, 95% HDI [6.25, 20.35]. 
Additionally, a credible main effect of trial type was found. The first 

trials in a sub-block were 33.11 ms slower than the second trials, 95% 
HDI [15.55, 47.67], and 38.45 ms slower than the third trials, 95% HDI 
[24.08, 55.65]. However, the second and third trials were not credibly 
different, 95% HDI [-18.93, 10.53]. Results are summarized in Table 2 
and Fig. 4A. 

As indicated in Fig. 4A, these main effects are qualified by a language 
by trial order interaction. For L1 trials, there is roughly equal facilitation 
from the first to second trials in a sub-block (24.49 ms, 95% HDI 
[− 48.77, − 2.89]) compared to the second and third trials (− 23.90, 95% 
HDI [− 45.51, − 2.57]). However, for L2 trials, there is a relatively large 
facilitation effect from the first to second trials in a sub-block (− 41.73 
ms, 95% HDI [− 63.47, − 19.30]), but there is no credible difference 
between the second and third trials in a sub-block (13.22, 95% HDI 
[− 7.52, 13.50]). 

Error Analyses Trials 1-3. For error analyses, each trial was coded 
either 1 or 0 (correct, incorrect) based on the participant’s response, and 
the data were input into a Bayesian model using rjags (Plummer, 2013). 
The model assumed each response is taken from a Bernoulli distribution, 
and a logistic link function was applied to the predictors to create a 
general linear model. The same predictors used to analyze trials 1-3 
were input into this analysis. Overall, only a main effect of language 
was found: pictures named in L2 produced 1.4% more errors than pic-
tures named in L1, 95% HDI [0.11, 4.7]. 

Naming Latency Analyses on Trial 5. Recall that the Inhibitory Model 
predicts no difference between sub-blocks on Trial 5, whereas the Non- 
Inhibitory Model predicts uniform sub-blocks to have longer naming 
latencies than mixed sub-blocks. In order to test this (i.e., whether 
spreading activation is eliminated after a language switch), each par-
ticipant’s naming latency data on trial five of each sub-block were input 
into the RT BHM as the dependent variable. Language (L1,L2) and sub- 
block type (mixed, uniform) were input as independent variables. 
Participant, stimulus and language of the stimulus (Spanish, English) 
were also input into the model to account for error associated with each 
source. 527 trials (9.9%) were excluded from the analysis due to 
participant error. Of these, 235 (4.5%) were due to timeouts, 134 (2.5%) 
were intrusion errors (i.e., wrong language), 130 (2.4%) were incorrect 
but semantically related/correct language responses, and 28 (<1%) 
were other errors (e.g., non-semantically related words, non-words, 
coughs etc.). 

Fig. 3. A representation of a single trial. The color of the background cued 
participants to speak in either L1 or L2 and was counterbalanced across 
participants. 

Table 2 
Naming Latency Results on Trials 1-3 based on the Bayesian Model.  

Source Level Mean 
(SE) 

BHM 
Est. 

Deflection 95% HDI      

Lower Upper 

Grand Mean  1195 
(3.44) 

1198 NA NA NA 

Language L1 1201 
(4.79) 

1204 6.23* 0.12 12.64  

L2 1189 
(4.94) 

1192 − 6.23* − 12.64 − 0.12 

Trial One 1222 
(6.35) 

1222 23.89* 14.07 33.73  

Two 1185 
(5.79) 

1189 − 9.18* − 17.93 − 0.67  

Three 1181 
(5.77) 

1183 − 14.65* − 23.43 − 6.02 

Trial by 
Language 

L1 One 1228 
(8.79) 

1229 0.58 − 8.55 9.41  

L1 
Two 

1203 
(8.11) 

1204 9.14 − 0.11 18.09  

L1 
Three 

1175 
(8.01) 

1180 − 9.38* − 18.39 − 0.86  

L2 One 1203 
(8.11) 

1215 − 0.58 − 9.41 8.55  

L2 
Two 

1169 
(8.26) 

1173 − 9.14 − 18.09 0.11  

L2 
Three 

1186 
(8.31) 

1186 9.38* 0.86 18.39 

*Indicates a credible deflection was found. 

7 The experiment controlled for repetition effects by not repeating a stimulus 
until all other stimuli had been named. However, to ensure that repetition ef-
fects were not confounding the results, we tested whether the independent 
variables interacted with repetition of the stimuli. No credible interactions were 
found in any of the analyses. The results are presented without repetition effects 
in the models. However, analyses with repetition effects can be found in the 
supplementary materials  

8 For all RT analyses, frequentist statistics were used to analyze the data and 
showed similar results to the Bayesian Model. Those analyses can be found in 
the supplementary materials 
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Results of the analysis of Trial 5 are in shown in Table 3; the data are 
also depicted in Fig. 4B. Trial 5 was a switch trial, and consistent with 
previous findings, there was a main effect of language. L1 trials were 
44.58 ms slower than L2 trials, 95% HDI [19.4, 46.8]. Type of sub-block 
(mixed, uniform) did not credibly affect reaction times. Neither was 
there an interaction between sub-block type and language. 

Because a null effect was found, the mixed and uniform sub-block 
means on Trial 5 were calculated for each participant and input into 
JASP to calculate a Bayes Factor using a Bayesian paired-samples t-test. 
The results indicate that BF10 = 0.167, giving substantial evidence for 
the null hypothesis over the alternative. The facilitation on Trials 1-3 
does seem to be eliminated after a language switch, supporting the 
predictions of the Inhibitory Model. 

Error Analyses on Trial 5. The same predictors used to analyze naming 
latencies on Trial 5 were input into the error analysis. There were no 
main effects or interactions on error rates on Trial 5. 

Naming Latency Analyses on Trial 6. The same Bayesian model used 
for Trial 5 data was used to analyze naming latencies for Trial 6 data. 
449 trials (9.9%) were excluded from the analysis due to participant 
error. Of these, 232 (4.3%) were due to timeouts, 72 (1.3%) were 
intrusion errors, 120 (2.3%) were incorrect but semantically related/ 
correct language responses, and 25 (<1%) were other errors (e.g., non- 
semantically related words, non-words, coughs etc.). 

Consistent with the pattern in Fig. 4C, there was a credible main 

Fig. 4. Naming latency results for Experiments 1-2. Panel A: Trials 1-3 within a sub-block in Experiment 1. Panel B: Results for Trial 5 in Experiment 1. Panel C: 
Results for Trial 6 in Experiment 1. Panel D: Effects of ordinal position within a block in Experiment 2. Error bars represent 95% HDI estimates of the means, 
equivalent to roughly 2 standard errors. 

Table 3 
Naming Latency Results on Trials 5 based on the Bayesian Model.  

Source Level Mean 
(SE) 

BHM 
Est. 

Deflection 95% HDI      

Lower Upper 

Grand 
Mean  

1306 
(6.44) 

1309 NA 1295.46 1322.26 

Language L1 1329 
(9.03) 

1331 22.29* 9.29 36.41  

L2 1283 
(9.17) 

1287 − 22.29* − 36.41 − 9.29 

Block Type Mixed 1303 
(9.02) 

1306 − 3.18 − 16.59 9.91  

Uniform 1309 
(9.21) 

1312 3.18 − 9.91 16.59 

Language 
by Block 

L1 
Mixed 

1321 
(12.55) 

1324 − 3.76 − 17.09 10.31  

L1 Uni. 1337 
(13.01) 

1338 3.76 − 10.31 17.09  

L2 
Mixed 

1284 
(12.94) 

1287 3.76 − 10.31 17.09  

L2 Uni. 1281 
(12.99) 

1286 − 3.76 − 17.09 10.31 

*Indicates a credible deflection was found. 
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effect of language (L1,L2). L2 stimuli were named 30.8 ms faster than L1 
stimuli, 95% HDI [-54.83, − 5.58]. There was a credible main effect for 
type of block (mixed, uniform). Uniform blocks were 38.30 ms slower 
than mixed blocks, 95% HDI [14.7, 61.7]. There was no credible inter-
action between block type and language. 

Error Analyses on Trial 6. The same predictors used to analyze naming 
latencies on Trial 6 were input into the error analysis. Overall, there was 
a main effect of Language where L2 trials produced 2.0% more errors 
than L1 trials, 95% [0.01, 2.9]. There was no main effect of Sub-Block or 
interaction between sub-block and Language. 

Discussion. The results of Experiment 1 generally support the pre-
dictions made by the Inhibitory Model. For example, the inhibitory 
control model (Green, 1998) predicts that language switching should 
“lead to the abolition of both cross-language and within-language 
competitor priming.” On Trial 5, there was no credible difference in 
naming latencies between mixed sub-blocks and uniform sub-blocks, 
and a Bayes Factor gave substantial evidence for the null effect. Addi-
tionally, there was no difference in accuracy between mixed and uni-
form sub-blocks. Whatever effect spreading activation had on the 
previous trials was eliminated on trial five. There was a difference be-
tween mixed and uniform sub-blocks on Trial 6, but based on the 
facilitation on Trials 1-3, uniform blocks should have been faster than 
mixed sub-blocks. 

In general, both models need to account for three things: (1) the 
facilitation found on Trials 1-3, (2) the null result of Trial 5 between 
Mixed and Uniform Sub-Blocks and (3) the interference found on Trial 6. 
The results of Trial 5 were more consistent with the a priori predictions 
of the Inhibitory computational model than with those of the Non- 
Inhibitory model. However, based on a priori modeling, neither model 
can explain the facilitation and interference found on the other trials. 
Having conducted a predictive test, we now turn to a descriptive test, i.e. 
the models’ abilities to fit the empirical data. 

Fitting the models to the data of Exp. 1 

In Simulations, a priori predictions were made for an Inhibitory model 
and a Non-Inhibitory model of bilingual naming. The results of Experi-
ment 1 showed that both models fared poorly. The inhibitory model 
could predict similar naming latencies on Trial 5 between mixed and 
uniform sub-blocks. It did not predict the facilitation on Trials 1-3. It also 
did not predict naming to take longer on Trial 6 in uniform blocks 
compared to mixed blocks. The Non-Inhibitory Model could predict the 
interference on Trial 6 between mixed and uniform sub-blocks, but that 
result is inconsistent with the facilitation found on Trials 1-3 and the null 
result on Trial 5. If naming semantic neighbors within a language (i.e., 
on Trials 1-3) produces facilitation, then the Non-Inhibitory Model 
should predict mixed block stimuli to be named slower on Trials 5 and 6. 

Because the facilitation on Trials 1-3 suggests within-language 
competition is absent, we removed the assumption of within language 
competition to create two new models, and we fit the models to the 
individual and average data. We refer to these models as the Non- 
Competitive Within-Language (NCWL) Inhibitory and Non- 
Competitive Within-Language Non-Inhibitory Models. Details of the 
fits to individual subjects and methods used to fit the models can be 
found in the Appendix B. Removing the within language constraint 
should demonstrate that (1) within-language competition is absent on 
Trials 1-3 and (2) the facilitation found on Trials 1-3 is the result of a 
different mechanism than the interference found on Trial 6 (i.e., uniform 
sub-blocks being named slower than mixed sub-blocks). We expect that 
the NCWL models will be able to account for the facilitation observed 
and improve overall model fit. See the Appendix A for information on 
how we removed the within-language competition assumption. 

We fit the models to the participants’ data individually, and to the 
average data. Individual results are found in Appendix B. For the aver-
aged data, the models were fit using random search (Bergstra & Bengio, 
2012). Parameters were allowed to vary randomly through parameter 

space to find the best values that could account for the data. To avoid 
overfitting, only three parameters were chosen for each model. For the 
Inhibitory Model, the competition parameter (V), the language strength 
parameter on stay trials (L) and inhibition parameter (h) were allowed to 
vary. The Non-Inhibitory Model does not have an inhibition parameter. 
Thus, the language strength parameter on switch trials was allowed to 
vary (Lswitch), along with the competition parameter (V), and the lan-
guage strength parameter on stay trials (Lstay). It should be noted that the 
inhibition parameter helps determine the language strength parameter 
on switch trials for the Inhibitory Model, and thus analogous parameters 
were chosen for both models. Additionally, a simplifying assumption 
was made by setting L2 parameters equal to the corresponding L1 free 
parameters. The remaining parameters, listed in Table 4, we kept equal 
to the values used in pre-experimental predictions (see Simulations). 

We averaged the data across participants for both mixed and uniform 
sub-blocks. We fit the models and calculated RMSE values across all four 
models (the Inhibitory Model, Non-Inhibitory, NCWL Inhibitory, NCWL 
Non-Inhibitory) using 5000 iterations. 

Fit of the models to the average data 

All participant data were aggregated and averaged by sub-block and 
trial number. The original and new models were fit to the averages. See 
Fig. 5 for a comparison of average fits of the models to the data of 
Experiment 1. Because there are only five observations per sub-block 
(not including Trial 1 - the baseline), no statistical analyses were used. 
However, RMSE values were found for each model. Averaging across 
sub-block type, the NCWL Inhibitory Model had the lowest error for both 
mixed (RMSE = 16.78 ms) and Uniform (RMSE = 32.70) sub-blocks. 
Interestingly, the NCWL Non-Inhibitory Model performed worst 
(mixed RMSE = 25.47, uniform RMSE = 36.48). The original Inhibitory 
Model performed similarly (Mixed RMSE = 23.54, Uniform RMSE =
35.84) to the original Non-Inhibitory Model (Mixed RMSE = 24.41, 
Uniform RMSE = 34.42). 

Considering the best-fitting parameter values of the original models 
in Table 4, an interesting pattern emerges. Specifically, within-language 
competition is virtually absent according to the original models (V ≈ .5; 
i.e., the first three trials all have similar RTs). For the original Inhibitory 
Model, the fits thereby suggest that the bulk of the competition comes 
from between-language distractors. However, to create switch costs in 
the Non-Inhibitory model, there has to be at least some within-language 
competition (i.e., between-language distractors have no effect on RTs). 
Turning to the L parameters, it is clear that the original Non-Inhibitory 
model solves this by assuming activation spreads to the lexicon 

Table 4 
Best fitting parameters for the Inhibitory and Non-Inhibitory Models of All 
Participant Data. The Original Models assume within language competition. The 
New Models assume no within-language competition.   

Inhibitory Non-Inhibitory 

Parameters Original Model NCWL Model Original Model NCWL Model 

Lstay,L1  6.3 1.08 6.1 8.7 
Lstay,L2  6.3 1.08 6.1 8.7 
h1  1.2 1.88 NA NA 
h2  1.2 1.88 NA NA 
Lswitch,L1  NA NA 118 139 
Lswitch,L2  NA NA 118 139 
c 0.01 0.01 0.01 0.01 
Y2  37.5 3.24 NA NA 
Y2  37.5 3.24 NA NA 
R1  3 3 3 3 
R2  3 3 3 3 
p1  0.8 0.40 0.75 0.40 
V 0.49 0.53 0.51 0.53  
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extremely slowly on switch trials. Both models assume spreading acti-
vation has little effect on RTs. 

On the other hand, the new models also showed interesting results. 
The NCWL Inhibitory Model performed best. The V parameter is now 
above the theoretical 0.5 threshhold for competition. The increase in the 
V parameter made it necessary for the target to receive activation more 
quickly (i.e., the L parameter is smaller compared to the original model), 
which also increased the inhibition parameter h. This allowed for the 
facilitation to be abolished after Trial 4 of a sub-block, allowing it to fit 
the RTs on Trial 5. In contrast, the NCWL Non-Inhibitory Model took the 
same tactic as the original: Assume spreading activation had a small 
effect, and account for switch costs by having activation spread 
extremely slowly to the lexicon. However, it was punished on Trial 5 as 
mixed blocks were disproportionately affected by the slow activation 
parameter and spreading activation. Namely, the lemma on Trial 5 in 
mixed sub-blocks had to be activated from its resting level. Without the 
benefit from spreading activation of previous trials and with the slow 
activation parameter, RTs increased drastically. If the NCWL Non- 
Inhibitory model allows for even modest facilitation on the first three 
trials, it cannot fit Trials 5 and 6 at all. This result demonstrates that any 
interference found on Trials 5 or 6 cannot be the result of the same 
mechanism that produced the facilitation on Trials 1-3. 

Despite some individual differences, our conclusions also generally 
hold when examining fits to individual data, as reported in Appendix B. 
Upon observing the individual iterations of the New Models, it is 
apparent that both models could account for relatively large facilitation 
effects on Trials 1-3. However, this would make them fit poorly on Trial 
6. The RTs on Trial 6 would be too fast. This increased the RMSE. These 
results suggest that the facilitation on the first three trials is the result of 
a different mechanism than the mechanism causing interference on Trial 
6. 

Discussion 

The model fits produced two relatively clear conclusions. (1) The 
NCWL Inhibitory Model qualitatively fit the average data best: it could 
account for the facilitation found in the first three trials while still 
showing equivalent RTs between mixed and Uniform sub-blocks on Trial 
5. (2) None of the models could account for facilitation on Trials 1-3 and 
still show interference on Trial 6 (i.e., Uniform Trial 6 RT > Mixed Trial 
6 RT). 

Although unlikely, the facilitation on Trials 1-3 might suggest that 

the stimuli within a semantic category were not sufficiently related to 
produce interference. It is possible that we chose semantic neighbors 
that were not in fact semantic neighbors (i.e., and hence no spreading 
activation actually occurred). This can be tested using the continuous 
naming paradigm, in which semantically related stimuli are named with 
filler trials. Prior investigations have used this paradigm to demonstrate 
that interference occurs each time a semantic neighbor is presented 
(Navarrete et al., 2014). Instead of presenting semantically related 
stimuli serially, we separated them in Experiment 2 by filler trials. By so 
doing, we aim to test whether (1) our stimuli were sufficiently related 
within a category and whether, as we suspect, (2) incremental learning 
effects have been mistaken as spreading activation effects in previous 
bilingual naming studies (Hong & Macwhinney, 2011; Lee & Williams, 
2001; Runnqvist et al., 2012). 

Experiment 2 

Experiment 1 found that priming effects were eliminated after a 
language switch. This supports the Inhibitory over the Non-Inhibitory 
model. However, Runnqvist et al. (2012) found that cumulative se-
mantic interference was not reduced in the continuous naming para-
digm. They took this as evidence against inhibition. But, those results 
may simply indicate that language switching does not affect incremental 
learning. In order to test this alternative explanation, we instructed 
participants to name semantically-related neighbors, this time separated 
by filler trials, (i.e., the continuous naming paradigm). If cumulative 
semantic interference is the result of a learning mechanism that is in-
dependent of semantic priming, then a specific prediction can be made: 
When introducing filler trials between related stimuli, cumulative se-
mantic interference should occur on both stay and switch trials and 
should should show the same pattern regardless of the number of filler 
trials. With each presentation of a semantic neighbor within a block, 
naming latency should increase 10–30 ms (Howard et al., 2006; Nav-
arrete et al., 2012; Navarrete et al., 2010). By the same token, such a 
result would also indicate that the stimuli within the semantic categories 
in Experiment 1 were sufficiently related. 

Method 

Participants. 45 English-Spanish speaking bilingual participants (66% 
female) were recruited through the Psychology Department participant 
pool. The same questionnaire used in Experiment 1 was given to 

Fig. 5. Average fits for the non-inhibitory, inhibitory, NCWL Non-Inhibitory and NCWL Inhibitory models.  
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participants in Experiment 2, as well as the Multilingual Naming Test. 30 
participants scored higher on the English portion of MINT than on the 
Spanish portion, nine scored higher on Spanish, and five scored equally 
well on both portions. One participant was excluded because they could 
not name more than 10% of the pictures in L2 of MINT. Like in Exper-
iment 1, the participants’ MINT scores were used to determine L1 and L2 
in the statistical analyses. If there was a tie, then their self-ratings were 
used. See Table 5 for a summary of participants’ self-ratings of language 
proficiency and the results of the Multilingual Naming Test. 

Stimuli and Apparatus. The same stimuli and apparatus used in 
Experiment 1 were used in Experiment 2. 

Procedure. The procedure in Experiment 2 was similar to that of 
Experiment 1 with one major exception: Stimuli within a block were 
pseudorandomized so that at least one intervening trial separated 
semantically related stimuli. Because of this, the mixed/uniform sub- 
block distinction no longer applies. Participants still named pictures in 
the same language order (Stay, Stay, Stay, Switch, Switch, Stay). The 
intervening/filler trials should introduce incremental learning effects. 
The number of filler trials was calculated by how many stimuli from 
another category were named between two semantically related stimuli. 
For example, if participants name apple, dress, bed, fresa, tambourine, 
seagull, then dress and bed would create a lag of two (i.e., two fillers) for 
fresa. 50% of trials had five or fewer fillers, while 50% of trials had five 
or more fillers. Like in Experiment 1, no word was repeated until all 
other stimuli were presented and language (Spanish, English) was 
counterbalanced. See Fig. 2b for a representation of a sub-block. 

Results 

Naming Latency Analysis. A Bayesian model that is similar to the 
models used for analyzing naming latencies in Experiment 1 was used to 
assess incremental learning effects in this experiment. Participant, 
stimulus, language (L1, L2) and language of the stimulus (English, 
Spanish) were controlled for. Trial type (stay, switch) and ordinal pre-
sentation of a semantically related stimulus (one through six) were input 
as independent variables. Consistent with previous literature, a picture 
from one semantic category served as a filler trial for pictures from 
another semantic category. 3116 trials (10.2%) were removed due to 
participant error. Of these, 1333 (4.4%) were due to timeouts, 627 
(2.1%) were intrusion errors, 983 (3.2%) were incorrect but semanti-
cally related/correct language responses, and 173 (< 0.6%) were other 
errors (e.g., non-semantically related words, non-words, coughs etc.). 

As is visually apparent in Fig. 4D, there was a main effect of ordinal 
presentation of a semantically related stimulus. On average, naming 
latency credibly increased by 9.98 ms for each presentation of a se-
mantic neighbor, 95% HDI [5.46, 14.21]. Additionally, there was a main 
effect of trial type. Stay trials were named 65.60 ms faster than switch 
trials, 95% HDI [-77.20, − 55.01]. There was no interaction between 
language and presentation order. The results indicate that language 
switching had little to no effect on CSI effects. 

We also checked whether number of filler trials influenced the CSI 

effect. Controlling for the same variables as the previous analysis, 
ordinal position (one through six) and number of filler trials (greater 
than or equal to five and less than five) were input as independent 
variables. The average slope with fewer than five intervening trials is 
12.85 ms per ordinal presentation, 95% HDI [4.88, 19.6], and it is nearly 
identical to the average slope of five or more trials, 11.35 ms per ordinal 
presentation, 95% HDI [6.22, 16.48]. Critically, the difference between 
the slopes is only 1.40 ms per presentation and is not credible, 95% HDI 
[-7.72, 9.89]. The results indicate that increasing the number of filler 
trials between semantically related stimuli does not decrease CSI, and it 
supports the idea that incremental learning created the semantic inter-
ference found in this experiment. 

Error Analyses. A Bayesian model that is similar to the models used 
for analyzing accuracy in Experiment 1 was used to assess incremental 
learning effects in Experiment 2. Participant, stimulus, language (L1, L2) 
and language of the stimulus (English, Spanish) were controlled for. Trial 
type (stay, switch) and ordinal presentation of a semantically related 
stimulus (one through six) were input as independent variables. There 
was a main effect of type of trial. Switch trials produced 1.88% more 
errors than stay trials, and the difference was credible, 95% HDI [0.26, 
4.6]. There was also a main effect of ordinal presentation. Naming ac-
curacy decreased by roughly 0.64% with each presentation of a semantic 
stimulus, 95% HDI [-1.66, − 0.09]. There was no credible interaction. 

Discussion 

Experiment 2 demonstrates that language switching does not abolish 
cumulative semantic interference in the continuous naming paradigm. 
With each presentation of a semantic neighbor, naming latencies 
increased by a constant amount. This was true for both stay and switch 
trials. Contrasting these results with the results of Experiment 1, we see 
evidence that cumulative semantic interference is not the result of 
spreading activation. Rather, it is the result of another mechanism. A 
likely candidate is incremental learning, as suggested by several re-
searchers (Damian & Als, 2005; Howard et al., 2006; Navarrete et al., 
2012; Navarrete et al., 2010). In addition, the results of Experiment 2 
reinforce the conclusions of Experiment 1. Namely, the stimuli were 
sufficiently related. Thus, switching languages abolished facilitation 
effects in Experiment 1, supporting an inhibitory model of bilingual 
language production. 

General discussion 

In this study, we detailed two computational models to test verbal 
theories of bilingual language control in speech production: an Inhibi-
tory model and a Non-Inhibitory model. We used those models to make 
predictions for how naming latencies would change when participants 
named semantically-related stimuli under different conditions (i.e., 
uniform sub-blocks and mixed sub-blocks). The Inhibitory Model pre-
dicted spreading activation effects (i.e., interference) would be abol-
ished following a language switch. The Non-Inhibitory Model predicted 
spreading activation effects would continue after a language switch. The 
results of Experiment 1 indicate that spreading activation effects were 
indeed eliminated. However, facilitation was found when naming pic-
tures within a language, which is something neither model predicted. 
We then fit the original models to the individual data, and the Inhibitory 
Model fit the individual data better than the Non-Inhibitory Model (see 
Appendix B). We then reran the models, assuming no within-language 
competition, and qualitatively, the NCWL Inhibitory Model was the 
only model that could explain both the facilitation of Trials 1-3 of a sub- 
block and the equivalent RTs on Trial 5 between Mixed and Uniform 
sub-blocks. 

Experiment 2 suggests that the continuous naming paradigm may not 
be a valid way of testing whether switching languages abolishes resid-
ual, spreading activation, and calls into question some of the conclusions 
made from previous research (Hong & Macwhinney, 2011; Lee & 

Table 5 
Participants’ language proficiency in Exp 2.   

Language 

Measure L1 L2 

Self-Ratings    
Speaking (out of 7) 6.61 (0.5) 6.09 (0.9)  
Reading (out of 7) 6.48 (0.7) 6.18 (1.3)  
Writing (out of 7) 6.30 (0.7) 6.02 (1.0)  
Age of Acquisition 2.65 (3.3) 4.38 (5.7) 

MINT (% correct) 89 (10) 73 (12) 

Note: MINT scores were used to determine bilinguals’ L1 and L2 in statistical 
analyses. The L1 determined by the MINT scores may not necessarily correspond 
with participants’ self ratings. 
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Williams, 2001; Runnqvist et al., 2012). Results indicated that it takes 
longer to name each additional presentation of a semantically related 
stimulus, regardless of language switching. Additionally, the number of 
filler trials had no effect on the interference effects found. If activation of 
semantic neighbors creates interference, then more filler trials should 
decrease the interference effect. However, this did not happen. 

Within-language competition in bilingual models of production 

An influential assumption in monolingual and bilingual models of 
speech production is that words compete for selection within a lexicon. 
For example, Costa and Caramazza (1999) proposed a non-inhibitory 
model of bilingual production, but they still assumed a competitive 
process within a language: “the degree of activation of [same language] 
non-target nodes affects the ease with which the target word will be 
selected” (p. 232). Similarly, Green (1998), when arguing for inhibition 
in the inhibitory control model, states “individuals have difficulty 
regulating the competition amongst lemmas via the semantic route” (p. 
73). Monolingual models also make this assumption (Harley, 1993; 
Levelt et al., 1999; Roelofs, 1992). 

Why do the production models make this assumption? Although the 
answer is beyond the scope of this paper, it is likely based on earlier 
studies that elicited speech errors (see Levelt, 1999) or incremental 
learning effects through the continuous naming paradigm or from 
picture-word interference tasks (Schriefers, Meyer, & Levelt, 1990). We 
have already argued that interference under the continuous naming 
paradigm is most likely due to incremental learning and not competi-
tion/activation. We will not belabor this point. On the other hand, 
picture-word interference tasks may increase the activation of a se-
mantic neighbor in a way that slows naming, but such slowing may not 
be attributable to competition within the lexicon (e.g., Mahon et al., 
2007). One might argue that as a participant is about to say the target 
word, the distractor gets chosen mistakenly due to its visual similarity to 
the target. The distractor gets temporarily selected, but its production is 
blocked by an internal monitoring mechanism, thereby preventing 
articulation (Hartsuiker & Kolk, 2001). This could produce the inter-
ference found in such studies. 

In Experiment 1, naming semantic neighbors one after another 
induced facilitation within a language. This result is consistent with 
recent monolingual studies, (Navarrete et al., 2010; Navarrete et al., 
2012; Navarrete et al., 2014). In particular, it is consistent with a non- 
competitive model of speech production within one language. It is not 
consistent with either of the original computational models designed in 
this study. This was evidenced by the fact that fitting the original models 
to participant data failed when those data showed facilitation. Experi-
ment 1’s results suggest that bilingual models of speech production need 
to be updated to account for the within-language facilitation found. 
More research is needed to replicate these findings. 

Finally, It seems unlikely based on Experiment 1 that activation 
within the semantic network creates “very transitory” facilitation while 
long lags create inhibition (Wheeldon & Monsell, 1994, p. 345). If this 
were the case, then by Trial 3 of a sub-block in Experiment 1, the 
interference in the lexicon should have offset the facilitation and a re-
turn to baseline should occur. However, Trial 3 still showed facilitation. 
This result is consistent with Navarrete et al. (2014), who found similar 
facilitatory effects even after five presentations of semantically related 
stimuli. It is also consistent with the NCWL Inhibitory Model that 
assumed no within-language competition. 

Reexamining between-language competition in bilingual speech production 

In Experiment 1, facilitation was found when naming within a lan-
guage. This calls into question whether competition between words 
exists within a lexicon during speech production. A pressing question 
then arises: If no within-language competition exists, does between- 
language competition exist? One of the reasons inhibition was 

proposed as a controlling mechanism is the so-called “hard problem” of 
bilingual lexical selection where multiple lexical representations 
become active across both languages (Finkbeiner, Gollan, & Caramazza, 
2006). It is unclear how the correct word, much less the correct lan-
guage, is chosen if competition exists at every level. If competition does 
not occur within a language, then it is hard to imagine why it would exist 
between languages, tempting the conclusion by extension that there is 
no between-language competition either. This line of reasoning would 
seem to eliminate the “hard problem” entirely. 

At this point, we argue against making the leap that between- 
language lexical selection is non-competitive. Let us consider more 
closely the results of Experiment 1. Those results showed that after 
participants named a series of semantically related stimuli, a language 
switch eliminated the facilitation that was previously observed. 
Conceptually, this suggests that activation flowed from the semantic 
network to the target lexicon, priming semantic neighbors in that lan-
guage (i.e., Trials 1-3 of a sub-block). After the language switch, that 
activation was eliminated to such a degree that naming another 
semantically-related neighbor had the same naming latency as an un-
related word (i.e., uniform Trial 5 RT = mixed Trial 5 RT). This is not a 
trivial result, and a Bayes Factor analysis indicated strong evidence for 
the null finding. Thus, results suggest inhibition is used to modulate 
activity of the two languages. 

One wrinkle in the results of Experiment 1 is that there was a dif-
ference between mixed and uniform sub-blocks on Trial 6. One might 
argue that Trial 5 of a sub-block is a switch trial, and that comparing 
mixed and uniform sub-blocks on Trial 6 is a better way to determine 
whether inhibition occurred. To this, we offer three responses. 

First, if there is no inhibition, then one should expect the same 
pattern of results on Trials 1-3 as on Trials 5-6. In other words, if there is 
facilitation found on Trials 1-3, then naming latencies in uniform blocks 
should be faster on Trials 5-6 than in mixed blocks. If interference is 
found on Trials 1-3, then naming latencies in uniform blocks should be 
slower on Trials 5-6 than in mixed blocks. Facilitation was found on 
Trials 1-3, but uniform blocks were either the same as mixed blocks (i.e., 
Trial 5), or slower than mixed blocks (i.e., Trial 6). Fitting the compu-
tational models to the participant data further confirmed this (see Ap-
pendix B). Both the Inhibitory and Non-Inhibitory models performed 
similarly in predicting participants’ uniform-block latencies, but the 
Inhibitory model outperformed the Non-Inhibitory model in predicting 
participants’ mixed-block latencies. It seems more likely that the mixed/ 
uniform difference found on Trial 6 reflects another mechanism like 
incremental learning than that it reflects spreading activation. Second, if 
there is no inhibition, then there is no a priori reason to believe that a 
switch trial should behave differently from stay trials in terms of priming 
effects. Experiment 2, for example, showed similar incremental learning 
effects on both stay and switch trials. Third, the NCWL Non-Inhibitory 
Model failed at modeling the average data because if it allowed for 
the needed facilitation on Trials 1-3, it would not be able to fit Trials 5-6. 
These results suggest inhibition is used to suppress the non-target lan-
guage, which in turn implies between language competition. 

Hybrid models 

At first glance, it might seem strange to propose a hybrid model that 
assumes competition between languages but no competition within a 
language. Yet, previous theories have suggested there is within-language 
competition but no between-language competition (Costa & Caramazza, 
1999; Costa & Santesteban, 2004; Costa et al., 2006). We see no reason 
why the reverse should not be considered, and we argue that this pos-
sibility should be taken seriously. Follow up research is needed to verify 
our findings. 

Consider a monolingual model that assumes the most active word/ 
concept is selected during production, and that the activation of its se-
mantic neighbors does not create interference (e.g., Caramazza, 1997; 
Dell, 1986). Such models could work well for monolinguals (except in 
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the relatively infrequent cases of memory search failures, e.g. tip-of-the 
tongue phenomena, in which retrieval is blocked repeatedly by some 
prepotent but erroneous response). However, what would happen if a 
monolingual started learning a second language? If both lexicons 
become active, and L1 is stronger than L2, then L1 words would be 
selected most, if not all, of the time. Some form of language control 
would still be needed as the language learner’s stronger L1 nodes would 
be de facto competitors to their L2 nodes. 

Now consider a more balanced bilingual within the context of non- 
competitive models. The situation is similar to an unbalanced bilin-
gual. During production, both languages would (at least initially) be 
highly active. In many cases, two words (i.e., the target and its trans-
lation) would almost completely overlap in their semantic representa-
tions (e.g., perro/dog). What determines which word is chosen in such a 
model? Without some sort of control, the most active word would “win” 
and output would look random, even when a bilingual is talking to a 
monolingual. In this way, bilinguals must constantly deal with “bivalent 
responses” (see Finkbeiner et al., 2006). 

Thus, a model that assumes no within-language competition would 
still need inhibition to control between language translations. The 
argument is bolstered by the fact that out of the four models tested here, 
the NCWL Non-inhibitory model (i.e., a non-hybrid model) provided the 
poorest fit to the averaged data. 

Activation vs. incremental learning 

Results from Experiment 2 appear to show incremental learning ef-
fects. When separated by filler trials, naming latencies increased each 
time a semantically-related neighbor was presented. In Experiment 1, 
when semantic neighbors were presented without fillers, facilitation was 
observed. In Experiment 2 with filler trials, naming latencies increased 
with each presentation of semantic neighbor. This was true for stay and 
switch trials. The effect was similar when there were few fillers (≤ 5) or 
many fillers (>5). The contrasting results from the two experiments, and 
the results of the new models (i.e., the more facilitation the models as-
sume on Trials 1-3, the less accurate they are fitting Trial 6) indicate that 
two different mechanisms are being used. We suggest one possibility is 
that spreading activation created the priming effects in Experiment 1 on 
Trials 1-3, and incremental learning created the interference in Trial 6 in 
and in Experiment 2. We argue that inhibition only affects activation due 
to spreading activation. Therefore, any conclusions about inhibition 
based on the continuous naming paradigm (i.e., separating semantic 
neighbors with filler trials) should be treated with caution. 

But this paper does little to undermine previous bilingual research 
that used variants of the continuous naming paradigm. Rather, it clar-
ifies the meticulous work already done, and suggests a new avenue of 
research. Our results lead us to think that bilingual speech production 
should be examined through the lens of activation/inhibition as well as 
through the lens of learning. There exists an extensive body of research 
in the memory domain that to date has not, but can be, leveraged to 
clarify and inform issues of bilingual language production. The research 
tradition we refer to has classically dealt with very similar issues and 
constructs of competition, interference, inhibition, and executive con-
trol of output, often with the use of verbal stimuli (see e.g., Delprato, 
1971; Delprato, 2005; McGeoch & Irion, 1952; Slamecka, 1967; Un-
derwood, 1983). We expect that pursuit of this unexplored connection 
between the literatures will lead to important advances in our under-
standing of bilingual language control. We also argue that previous 
bilingual control studies that look at repetition priming (e.g., Kleinman 
& Gollan, 2018), and/or semantic interference (e.g., Lee & Williams, 
2001; Hong & Macwhinney, 2011) can be reexamined under the lens of 
incremental learning effects. 

How a non-inhibitory model could still work 

We have presented two main models in this study: an Inhibitory 

Model and a Non-Inhibitory Model. We tested each model three times: 
(1) once to make predictions before gathering data (2) fitting the models 
to the data from Experiment 1 assuming within-language competition 
and (3) fitting the models to the data from Experiment 1 assuming no 
within-language competition. In so doing, we made assumptions, which 
we feel are reasonable and grounded in past experiments. However, as a 
thought experiment, we would like to discuss how the Non-Inhibitory 
Model could still work. 

The major assumption we made is that spreading activation affects 
both languages. This idea is consistent with experimental results and 
current theories that show both languages become active during speech 
production (e.g., Costa et al., 1999; Dijkstra et al., 2019; Hermans et al., 
1998; Kheder & Kaan, 2019; Santesteban & Schwieter, 2019). However, 
if spreading activation only affects one language, then a non-inhibitory 
model could still be viable, but with some caveats. Consider a bilingual 
naming six stimuli in a uniform sub-block. On trials 1-3, they name 
apple, grapefruit, orange in their L1. No spreading activation occurs in 
their L2 on the fourth trial as they name peach. Activation in the first 
language decays during this time. When switching back into their L1 to 
name strawberry, all the residual spreading activation has decayed as 
well as any facilitation. We think this is an unlikely explanation. How-
ever, it should be testable with the right experimental paradigm (e.g., 
using a modified blocked naming/continuous naming paradigm like 
those used in the study). 

Additionally, a non-inhibitory model may still work for specific in-
dividuals. Although the NCWL Non-Inhibitory Model fit the average 
data worse than the NCWL Inhibitory Model did, it sometimes per-
formed similarly when fitting to participants individually (see Appendix 
B). This might suggest that inhibition is used by the majority of partic-
ipants, but a few may be relying on a non-inhibitory mechanism. 
However, the individual fits are clearly noisy, which is typical in 
comparing individual data to group averages. This could make the 
participant fits appear more similar between the models than they are. 
Regardless, a study specifically designed to examine individual differ-
ences may be able to determine whether some bilinguals use a non- 
inhibitory lexical mechanism. 

Reverse dominance effects: proactive or reactive inhibition? 

We now consider whether the reverse dominance found in Experi-
ment 1 reflects proactive inhibition, reactive inhibition or both. The 
inhibitory models we presented assume a type of global inhibition is 
applied to both languages, and that the non-target language remains 
inhibited until a language switch. However, we did not specifically as-
sume proactive inhibition. This type of inhibition is meant to try to 
“resolve anticipated language interference” before it happens (Declerck 
et al., 2020). Reactive inhibition, on the other hand, applies inhibition 
that is proportional to how active the distractors are. Let us compare 
what proactive and reactive inhibition would predict trial by trial in 
Experiment 1. 

During an experimental sub-block, participants were presented with 
the following trial types: stay, stay, stay, switch, switch, stay. This pattern 
repeated throughout the experiment. After switch trials (e.g., Trial 5 of 
Experiment 1), theories of proactive and reactive inhibition would 
predict similar naming latencies: longer switch RTs in L1 than in L2. The 
strength of L1 would create strong reactive inhibition on L2 trials, which 
would increase RTs when participants switch back into L1. Proactive 
inhibition would create inhibiton on each L1 trial to facilitate naming in 
L2, also increasing L1 RTs. It is difficult to determine which type of in-
hibition is used based only on results from Trial 5 of Experiment 1. 

However, the results of Trials 1-3 seem to slightly favor a non- 
proactive inhibitory account. If bilinguals anticipate interference from 
L1, then after they name a picture on Trial 1 of a sub-block, they should 
proactively re-inhibit L1. This would counteract the priming observed 
on Trials 2 and 3 in L1. One might argue that as bilinguals progressed in 
the experiment, they learned the trial order, and “proactively used 
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proactive inhibition.” We doubt this explanation however, because an 
analysis of repetition effects showed no two- or three-way interactions 
between repetition of the stimuli, language and sub-block trial number 
(see Supplementary Materials). Additionally, participants were not told 
that trial type would repeat, and informal interviews with several par-
ticipants after the Experiment ended indicated they did not catch on to 
the trial order. 

How, then, do the models account for reverse dominance, especially 
given the fact that it occurred in both experiments on stay and switch 
trials? We present two non-mutually exclusive ideas. First, proactive 
control may happen, but it is non-inhibitory in nature. Sspreading 
activation can still happen between semantic neighbors on stay trials 
and accounts for reverse dominance. Second, strong inhibition of the 
unintended language creates quick RTs, especially if within-language 
competition is absent. Consider Eq. 4 of the Inhibitory Model. The 
faster distractors decrease in activation, the more quickly a word is 
selected. Because proficient bilinguals’ L1 and L2 are similar in strength, 
slightly stronger L1 inhibition compared to L2 could cause L1 stay trials 
to be longer than L2 stay trials.9 Thus, the model provides a mathe-
matical explanation for the “overshoot” hypothesis proposed by 
Declerck et al. (2020) and Gollan and Ferreira (2009). Understanding 
reverse dominance was not a goal of this study, and future research is 
needed to better understand this question. 

Conclusion 

The modeling and experimental work we report suggest that 

language switching abolishes spreading activation effects, but cumula-
tive semantic interference (created by a more gradual, incremental 
learning process) is unaffected by language switching. Experiment 1 
provides evidence that bilinguals use inhibition in order to control 
language output, consistent with the Inhibitory Model. But it also 
demonstrates the need to update models of monolingual and bilingual 
lexical access to account for the facilitation that was found. Experiment 
1 suggests that spreading activation does not create within-language 
competition among lexical entries. Experiment 2 suggests that models 
of bilingual language control should incorporate a mechanism of in-
cremental learning. This study also gives researchers a new tool that can 
allow them to test for inhibition instead of switch costs. In answering the 
question, “How do bilinguals control their language output,” the answer 
is by using global inhibition and by continual (and incremental) adap-
tation to their environment. 
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Appendix A. NCWL models 

In order to remove the within-language competition assumption of the Non-Competitive Within-Language (NCWL) Inhibitory and Non- 
Competitive Within-Language Non-Inhibitory Models, we had to modify Eqs. 4 and 8 of the original models. In the original models, as the target 
activation increased, within-language distractor activation also increased. The increasing distractor activation affected how quickly a lemma was 
selected. To get rid of this effect, the within-language distractor activations were replaced by constants in those equations. To keep the new models as 
similar to the original models as possible, the sum (S) of the initial activation levels for the within-language competitors were used. Thus, Eq. 4 
becomes 

ax⩾V × (S+
∑

ab) (10)  

where 
∑

ab is the sum total of the between language distractors. Because the Non-Inhibitory Model has no between language distractors, Eq. 8 
becomes 

ax⩾V × (S) (11)  

It should be noted that activation still spreads to the non-target nodes. The only difference is that those activation levels do not contribute to the above 
equations. 

Additionally, the models needed to be modified in order to create spreading activation effects. In the original models, the p1 parameter was set to 
around 0.75-0.8. This allowed the target to receive more activation than the distractors. On the next semantically related trial, the target would 
become a distractor and increase naming latencies. However, because there is no longer any within-language competition between words, the p1 
parameter needed to be lower in order to give new targets sufficient priming on the next trial. There were other ways of accomplishing this goal, but 
they required changing multiple parameters. Modifying p1 ensured that the new and original models were as similar as possible. One other change was 
made: the inhibition parameter (h) was no longer proportional to the reactivation parameter (Y). This is due to the fact that without within-language 
distractors, the switch cost was almost entirely determined by the inhibition parameter anyway (i.e., the faster the between-language words are 
inhibited, the faster the switch cost). Making h proportional to Y was redundant and unnecessary. However, the reactivation parameter was still 
proportional to the language strength parameter, just like the NCWL Non-Inhibitory Model. 

Appendix B. Individual participant fits 

We fit the original models to each participant’s individual data. For each participant in Experiment 1, means were computed for each trial within 
both types of sub-blocks (12 total means for each participant: six uniform means and six mixed means). The first trial of a sub-block was then sub-
tracted from each trial to normalize the data. The original models were fit to each participant’s naming latency data using custom scripts programmed 

9 Some reactivation of L2 would also be needed between L1 stay trials. 
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in R. To simplify parameter estimation, the noise parameters were removed and the three remaining parameters for each model were allowed to vary 
randomly. The predictions were normalized as in the participants’ data, and then compared to a participant’s responses for both mixed and uniform 
sub-blocks. Root Mean Square Error (RMSE) was then calculated for the participant to estimate the goodness of fit of the model to that participant’s 
data; higher RMSE values suggest a worse fit. This process was repeated 300 times for each participant. The iteration with the lowest average RMSE of 
both types of sub-blocks was then chosen, and the RMSE, parameter estimates, and fitted latencies were saved. 

As an exploratory analysis, we also wanted to test the idea that less proficient bilinguals use inhibition, but more proficient bilinguals use a lexical 
selection mechanism (see Costa et al., 2006). If so, then individual participant fit (i.e., RMSE) for the Non-Inhibitory Models should be positively 
correlated with proficiency. We used the difference between L1 and L2 scores on the MINT as a measure of proficiency. Each participants’ RMSE was 
used to determine model fit. 

B.1. Fit of original models to individual participant data 

For Uniform sub-blocks, the Inhibitory model had an average participant RMSE of 81.11 (SD = 41.91). Average RMSE of the Non-Inhibitory Model 
was equal to 78.58 (SD = 40.05). A Bayesian paired samples t-test showed that the difference was weak or anecdotal, BF10 = 1.36. In other words, 
there isn’t much evidence that the non-inhibitory performed better on Uniform sub-blocks compared to the inhibitory model. 

For Mixed sub-blocks, the Inhibitory model had an average participant RMSE of 70.09 (SD = 39.63). Average RMSE of the Non-Inhibitory Model 
was equal to 80.11 (SD = 40.65). A Bayesian Paired Samples t-test showed that the difference was strong, BF10 = 35.51. In other words, there is 
substantial evidence that the Inhibitory Model fit the data better than the Non-Inhibitory Model on mixed sub-blocks. 

Fig. B.1 shows the three best(labeled 1-3) and worst (labeled 41–43) participant fits for the original models. The best fitting participants were those 
with the lowest RMSE. The worst fitting participants were those with the highest RMSE. Notice that the models fit the data well when there is little or 
no facilitation. When there is facilitation, the models fail. 

B.2. Fit of new models to individual participant data 

For Uniform sub-blocks, the NCWL Inhibitory model had an average participant RMSE of 84.57 (SD = 40.43). Average RMSE of the Non-Inhibitory 
Model was equal to 85.03 (SD = 41.14). A Bayesian paired samples t-test showed no credible difference, BF10 = 0.16. In other words, the null hy-
pothesis is favored (i.e., both models performed equally well). 

For Mixed sub-blocks, the Inhibitory model had an average participant RMSE of 68.56 (SD = 35.87). Average RMSE of the Non-Inhibitory Model 
was equal to 66.52 (SD = 35.80). and is an improvement over the original. A Bayesian Paired Samples t-test showed no credible difference between 
the NCWL Inhibitory and NCWL Non-Inhibitory, BF10 = 0.21. In other words, the null hypothesis is favored (i.e., both models performed equally well). 

Fig. B.2 shows the three best (labeled 1-3) and worst (labeled 41–43) participant fits for each model. Notice that qualitatively, the NCWL Inhibitory 
model can now account for facilitation on the first three trials (e.g., 41). 

To test whether the NCWL Non-Inhibitory Model fit more proficient bilinguals better than for less proficient bilinguals, we ran a Pearson’s cor-
relation using the participants’ MINT scores (L1 vocabulary score - L2 vocabulary score) and individual RMSE. As participants got more proficient, 
their RMSE scores decreased (i.e., the fit was better), but the effect was small and not significant, r(42)=0.09, p = 0.58. 

Fig. B.1. Fits of the original models to the data of six participants (3 best and 3 worst). The language strength parameter (L), the inhibition parameter (h) and 
competition parameter (V) were allowed to change. Fits for Inhibitory Model are shown on the left graphs, and Non-Inhibitory Model are shown on the right graphs. 
The top panels show fits for Uniform Sub-Blocks, and the bottom panels show fits for Mixed Sub-Blocks. 
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Appendix C. Supplementary material 

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.jml.2020.104195. 

References 

Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization. 
Journal of Machine Learning Research, 13, 281–305. 

Bobb, S. C., & Wodniecka, Z. (2013). Language switching in picture naming: What 
asymmetric switch costs (do not) tell us about inhibition in bilingual speech 
planning. Journal of Cognitive Psychology, 25(5), 568–585. 

Boersma, P. (2006). Praat: Doing phonetics by computer. http://www.praat.org/. 
Branzi, F. M., Della Rosa, P. A., Canini, M., Costa, A., & Abutalebi, J. (2016). Language 

control in bilinguals: Monitoring and response selection. Cerebral Cortex (New York, 
N.Y.: 1991), 26, 2367–2380. 

Caramazza, A. (1997). How many levels of processing are there in lexical access? 
Cognitive Neuropsychology, 14(1), 177–208. 

Christoffels, I. K., Firk, C., & Schiller, N. O. (2007). Bilingual language control: An event- 
related brain potential study. Brain Research, 1147, 192–208. 

Collins, A. M., & Loftus, E. F. (1975). A spreading-activation theory of semantic 
processing. Psychological Review, 82(6), 407. 

Coltheart, M., Rastle, K., Perry, C., Langdon, R., & Ziegler, J. (2001). DRC: A dual route 
cascaded model of visual word recognition and reading aloud. Psychological Review, 
108(1), 204–256. 

Costa, A. (2005). Handbook of Bilingualism: Psycholinguistic Approaches., chapter Lexical 
Access in Bilingual Production (pp. 308–325). Oxford University Press. 

Costa, A., & Caramazza, A. (1999). Is lexical selection in bilingual speech production 
language-specific? Further evidence from SpanishSpanish bilinguals. Bilingualism: 
Language and Cognition, 2, 231–244. 

Costa, A., & Santesteban, M. (2004). Lexical access in bilingual speech production: 
Evidence from language switching in highly proficient bilinguals and L2 learners. 
Journal of Memory and Language, 50(4), 491–511. 

Costa, A., Miozzo, M., & Caramazza, A. (1999). Lexical Selection in Bilinguals: Do Words 
in the Bilingual’s Two Lexicons Compete for Selection? Journal of Memory and 
Language, 41(3), 365–397. 

Costa, A., Santesteban, M., & Ivanova, I. (2006). How do highly proficient bilinguals 
control their lexicalization process? Inhibitory and language-specific selection 
mechanisms are both functional. Journal of Experimental Psychology: Learning, 
Memory, and Cognition, 32(5), 1057–1074. 

Costa, A., Pannunzi, M., Deco, G., & Pickering, M. J. (2017). Do bilinguals automatically 
activate their native language when they are not using it? Cognitive Science, 41(6), 
1629–1644. 

Damian, M. F., & Als, L. C. (2005). Long-lasting semantic context effects in the spoken 
production of object names. Journal of Experimental Psychology: Learning, Memory, 
and Cognition, 31(6), 1372. 

Damian, M. F., & Bowers, J. S. (2003). Locus of semantic interference in picture-word 
interference tasks. Psychonomic Bulletin & Review, 10(1), 111–117. 

Damian, M. F., Vigliocco, G., & Levelt, W. J. (2001). Effects of semantic context in the 
naming of pictures and words. Cognition, 81(3), B77–B86. 

Davies, M. (2002–2017a). Corpus del Español: 100 million words, 1200s–1900s. 
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