McDanielā€™s Employment Interview Data

library(metafor)  # wake up metafor so it will run
## Loading required package: Matrix
## Loading 'metafor' package (version 2.0-0). For an overview 
## and introduction to the package please type: help(metafor).
dat.mcdaniel1994  # print the McDaniel 1994 dataset
##     study   ni    ri type struct
## 1       1  123  0.00    j      s
## 2       2   95  0.06    p      u
## 3       3   69  0.36    j      s
## 4       4 1832  0.15    j      s
## 5       5   78  0.14    j      s
## 6       6  329  0.06    j      s
## 7       7  153  0.09    j      s
## 8       8   29  0.40    j      s
## 9       9   29  0.39    s      s
## 10     10  157  0.14    s      s
## 11     11  149  0.36    s      s
## 12     12   92  0.28    j      u
## 13     13   15  0.62    j      s
## 14     14   15  0.07    j      u
## 15     15  170  0.18    j      u
## 16     16   19  0.42    j      s
## 17     17   19  0.08    j      u
## 18     18   68  0.18    p      u
## 19     19   93  0.43    j      u
## 20     20   57  0.04    j      u
## 21     21   80 -0.04    p   <NA>
## 22     22   53  0.05    p   <NA>
## 23     23   24 -0.14    p   <NA>
## 24     24   57  0.05    j      s
## 25     25  275  0.35    j      s
## 26     26   45 -0.08    p   <NA>
## 27     27   79  0.24    p   <NA>
## 28     28  107  0.16    p   <NA>
## 29     29   31  0.25    j      u
## 30     30  407  0.68    j      s
## 31     31   84  0.61    j      s
## 32     32    8  0.81    j      s
## 33     33    6  0.99    j      s
## 34     34    7  0.66    j      s
## 35     35   12  0.45    j      s
## 36     36   14  0.71    j      s
## 37     37   40  0.27    j      s
## 38     38   40 -0.02    j      s
## 39     39   99  0.29    j      u
## 40     40  164  0.13    j      u
## 41     41   67  0.03    j      u
## 42     42   57  0.00    j      u
## 43     43   50  0.09    j      s
## 44     44  129 -0.03    j      u
## 45     45   49  0.46    s      s
## 46     46   63  0.30    s      s
## 47     47   56  0.33    s      s
## 48     48  238  0.24    p   <NA>
## 49     49   20  0.64    j      s
## 50     50  122  0.12    j      u
## 51     51   51  0.15    j      u
## 52     52   40  0.44    j      u
## 53     53  210  0.00    j      s
## 54     54  334  0.16    j      s
## 55     55  310  0.21    p   <NA>
## 56     56  180  0.29    j      s
## 57     57   93  0.19    j      u
## 58     58  472  0.04    j      u
## 59     59   44  0.56    j      u
## 60     60   75  0.14    j      u
## 61     61   68  0.44    j      u
## 62     62   38  0.36    j      u
## 63     63   42  0.34    j   <NA>
## 64     64   39  0.11    j   <NA>
## 65     65   49  0.40    j   <NA>
## 66     66   41  0.23    j   <NA>
## 67     67  200  0.22    j      s
## 68     68  850  0.44    j      s
## 69     69   41  0.27    j      s
## 70     70   32  0.11    j      s
## 71     71   65  0.27    j      s
## 72     72  125 -0.07    j      s
## 73     73  134  0.32    j      s
## 74     74   21  0.05    j      u
## 75     75   44  0.20    j      u
## 76     76  170  0.18    j      u
## 77     77  149  0.34    j      s
## 78     78  296  0.03    j      s
## 79     79   24  0.45    s      s
## 80     80  312  0.34    j      s
## 81     81  205  0.51    j      s
## 82     82   30  0.41    s      s
## 83     83   11  0.37    s      s
## 84     84   22  0.25    s      s
## 85     85   37 -0.17    j      s
## 86     86   43  0.47    j      s
## 87     87   72  0.32    j      s
## 88     88   72 -0.09    s      s
## 89     89  108  0.33    j      s
## 90     90   73  0.22    j      s
## 91     91   73  0.27    s      s
## 92     92  117  0.00    j      s
## 93     93   80  0.41    j      s
## 94     94   95  0.16    j      s
## 95     95  182  0.00    j      s
## 96     96   93  0.03    j      s
## 97     97   64  0.01    j      s
## 98     98  370  0.03    j      s
## 99     99  131  0.14    j      s
## 100   100   87  0.11    j      s
## 101   101   80  0.08    j      s
## 102   102   41 -0.13    j      s
## 103   103   35  0.13    j      u
## 104   104  106  0.36    j      s
## 105   105   86  0.06    j      s
## 106   106   54  0.19    j      s
## 107   107  393  0.27    j      s
## 108   108  102  0.17    j      s
## 109   109  115  0.34    j      s
## 110   110   63  0.28    s      s
## 111   111   22  0.11    j      s
## 112   112   37  0.07    j      u
## 113   113  116 -0.13 <NA>   <NA>
## 114   114  416  0.12    j      u
## 115   115  101  0.12    j      u
## 116   116 1359  0.37    j      u
## 117   117   82  0.26    p      u
## 118   118   32  0.42    j      s
## 119   119   42  0.37    j      s
## 120   120  196  0.17    j      s
## 121   121   44  0.19    j      s
## 122   122   47  0.32    s      s
## 123   123   37  0.33 <NA>   <NA>
## 124   124   12  0.24    j      s
## 125   125 1807  0.09 <NA>   <NA>
## 126   126   73  0.36    j      s
## 127   127   73  0.26    s      s
## 128   128   70  0.42    j      s
## 129   129   30  0.62    j      s
## 130   130   60  0.87    j      s
## 131   131   38 -0.07    j      s
## 132   132   12  0.65    j      s
## 133   133   33  0.17    j      u
## 134   134   33  0.30    j      u
## 135   135   28  0.45    s      s
## 136   136   51  0.24    p      u
## 137   137   49  0.02    p      u
## 138   138  164  0.23    j      s
## 139   139  195  0.17    j      s
## 140   140  165  0.32    j      s
## 141   141   40  0.36    j      s
## 142   142  100  0.09    p      s
## 143   143 4195  0.13    j      u
## 144   144  179  0.29    j      s
## 145   145   74  0.49    j      s
## 146   146  110  0.40    j      s
## 147   147   31  0.23    j      s
## 148   148   70  0.31    j      s
## 149   149   21  0.46    j      s
## 150   150   29 -0.12    j      s
## 151   151   51  0.22    j      u
## 152   152   51  0.59    j      s
## 153   153   40  0.21    j      s
## 154   154   40  0.02    j      s
## 155   155  129 -0.03    j      s
## 156   156  196  0.28    j      s
## 157   157   31 -0.04    j      s
## 158   158  494  0.19    j      u
## 159   159  101  0.23    j      s
## 160   160  175  0.30    j      s
resM <- rma(ri=ri, ni=ni, measure='ZCOR', data=dat.mcdaniel1994) #run metafor 
resM              # print results of running metafor
## 
## Random-Effects Model (k = 160; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of total heterogeneity): 0.0293 (SE = 0.0049)
## tau (square root of estimated tau^2 value):      0.1712
## I^2 (total heterogeneity / total variability):   81.29%
## H^2 (total variability / sampling variability):  5.35
## 
## Test for Heterogeneity: 
## Q(df = 159) = 789.7321, p-val < .0001
## 
## Model Results:
## 
## estimate      se     zval    pval   ci.lb   ci.ub     
##   0.2374  0.0170  13.9995  <.0001  0.2042  0.2706  ***
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

As you can see, metafor computes a meta-analysis on the 160 studies in the dataset. Because I specificied ā€˜ZCOR,ā€™ the analysis is done in the Fisher z transformation rather than the original Pearson r metric. The results are in z as well, so you have to translate back.

forest(resM)      # create a forest plot

funnel(resM)      # create a funnel plot

There are too many studies for the forest plot to work well. More than about 40 studies presents a problem for the traditional forest plot. But there are ways around this. The funnel plot works well with lots of studies.

Now to run a moderator analysis. First, we need to sort the data by the moderator, then run the analysis.

mcdanielStruct <- dat.mcdaniel1994[order(dat.mcdaniel1994$struct, dat.mcdaniel1994$ri), ]
mcdanielStruct
##     study   ni    ri type struct
## 85     85   37 -0.17    j      s
## 102   102   41 -0.13    j      s
## 150   150   29 -0.12    j      s
## 88     88   72 -0.09    s      s
## 72     72  125 -0.07    j      s
## 131   131   38 -0.07    j      s
## 157   157   31 -0.04    j      s
## 155   155  129 -0.03    j      s
## 38     38   40 -0.02    j      s
## 1       1  123  0.00    j      s
## 53     53  210  0.00    j      s
## 92     92  117  0.00    j      s
## 95     95  182  0.00    j      s
## 97     97   64  0.01    j      s
## 154   154   40  0.02    j      s
## 78     78  296  0.03    j      s
## 96     96   93  0.03    j      s
## 98     98  370  0.03    j      s
## 24     24   57  0.05    j      s
## 6       6  329  0.06    j      s
## 105   105   86  0.06    j      s
## 101   101   80  0.08    j      s
## 7       7  153  0.09    j      s
## 43     43   50  0.09    j      s
## 142   142  100  0.09    p      s
## 70     70   32  0.11    j      s
## 100   100   87  0.11    j      s
## 111   111   22  0.11    j      s
## 5       5   78  0.14    j      s
## 10     10  157  0.14    s      s
## 99     99  131  0.14    j      s
## 4       4 1832  0.15    j      s
## 54     54  334  0.16    j      s
## 94     94   95  0.16    j      s
## 108   108  102  0.17    j      s
## 120   120  196  0.17    j      s
## 139   139  195  0.17    j      s
## 106   106   54  0.19    j      s
## 121   121   44  0.19    j      s
## 153   153   40  0.21    j      s
## 67     67  200  0.22    j      s
## 90     90   73  0.22    j      s
## 138   138  164  0.23    j      s
## 147   147   31  0.23    j      s
## 159   159  101  0.23    j      s
## 124   124   12  0.24    j      s
## 84     84   22  0.25    s      s
## 127   127   73  0.26    s      s
## 37     37   40  0.27    j      s
## 69     69   41  0.27    j      s
## 71     71   65  0.27    j      s
## 91     91   73  0.27    s      s
## 107   107  393  0.27    j      s
## 110   110   63  0.28    s      s
## 156   156  196  0.28    j      s
## 56     56  180  0.29    j      s
## 144   144  179  0.29    j      s
## 46     46   63  0.30    s      s
## 160   160  175  0.30    j      s
## 148   148   70  0.31    j      s
## 73     73  134  0.32    j      s
## 87     87   72  0.32    j      s
## 122   122   47  0.32    s      s
## 140   140  165  0.32    j      s
## 47     47   56  0.33    s      s
## 89     89  108  0.33    j      s
## 77     77  149  0.34    j      s
## 80     80  312  0.34    j      s
## 109   109  115  0.34    j      s
## 25     25  275  0.35    j      s
## 3       3   69  0.36    j      s
## 11     11  149  0.36    s      s
## 104   104  106  0.36    j      s
## 126   126   73  0.36    j      s
## 141   141   40  0.36    j      s
## 83     83   11  0.37    s      s
## 119   119   42  0.37    j      s
## 9       9   29  0.39    s      s
## 8       8   29  0.40    j      s
## 146   146  110  0.40    j      s
## 82     82   30  0.41    s      s
## 93     93   80  0.41    j      s
## 16     16   19  0.42    j      s
## 118   118   32  0.42    j      s
## 128   128   70  0.42    j      s
## 68     68  850  0.44    j      s
## 35     35   12  0.45    j      s
## 79     79   24  0.45    s      s
## 135   135   28  0.45    s      s
## 45     45   49  0.46    s      s
## 149   149   21  0.46    j      s
## 86     86   43  0.47    j      s
## 145   145   74  0.49    j      s
## 81     81  205  0.51    j      s
## 152   152   51  0.59    j      s
## 31     31   84  0.61    j      s
## 13     13   15  0.62    j      s
## 129   129   30  0.62    j      s
## 49     49   20  0.64    j      s
## 132   132   12  0.65    j      s
## 34     34    7  0.66    j      s
## 30     30  407  0.68    j      s
## 36     36   14  0.71    j      s
## 32     32    8  0.81    j      s
## 130   130   60  0.87    j      s
## 33     33    6  0.99    j      s
## 44     44  129 -0.03    j      u
## 42     42   57  0.00    j      u
## 137   137   49  0.02    p      u
## 41     41   67  0.03    j      u
## 20     20   57  0.04    j      u
## 58     58  472  0.04    j      u
## 74     74   21  0.05    j      u
## 2       2   95  0.06    p      u
## 14     14   15  0.07    j      u
## 112   112   37  0.07    j      u
## 17     17   19  0.08    j      u
## 50     50  122  0.12    j      u
## 114   114  416  0.12    j      u
## 115   115  101  0.12    j      u
## 40     40  164  0.13    j      u
## 103   103   35  0.13    j      u
## 143   143 4195  0.13    j      u
## 60     60   75  0.14    j      u
## 51     51   51  0.15    j      u
## 133   133   33  0.17    j      u
## 15     15  170  0.18    j      u
## 18     18   68  0.18    p      u
## 76     76  170  0.18    j      u
## 57     57   93  0.19    j      u
## 158   158  494  0.19    j      u
## 75     75   44  0.20    j      u
## 151   151   51  0.22    j      u
## 136   136   51  0.24    p      u
## 29     29   31  0.25    j      u
## 117   117   82  0.26    p      u
## 12     12   92  0.28    j      u
## 39     39   99  0.29    j      u
## 134   134   33  0.30    j      u
## 62     62   38  0.36    j      u
## 116   116 1359  0.37    j      u
## 19     19   93  0.43    j      u
## 52     52   40  0.44    j      u
## 61     61   68  0.44    j      u
## 59     59   44  0.56    j      u
## 23     23   24 -0.14    p   <NA>
## 113   113  116 -0.13 <NA>   <NA>
## 26     26   45 -0.08    p   <NA>
## 21     21   80 -0.04    p   <NA>
## 22     22   53  0.05    p   <NA>
## 125   125 1807  0.09 <NA>   <NA>
## 64     64   39  0.11    j   <NA>
## 28     28  107  0.16    p   <NA>
## 55     55  310  0.21    p   <NA>
## 66     66   41  0.23    j   <NA>
## 27     27   79  0.24    p   <NA>
## 48     48  238  0.24    p   <NA>
## 123   123   37  0.33 <NA>   <NA>
## 63     63   42  0.34    j   <NA>
## 65     65   49  0.40    j   <NA>

Note how the data are sorted (s, u, then NA for missing). Now the analysis.

resStruct <- rma(ri=ri, ni=ni, measure='ZCOR', method='DL', data=mcdanielStruct, mods = ~mcdanielStruct$struct)
## Warning in rma(ri = ri, ni = ni, measure = "ZCOR", method = "DL", data =
## mcdanielStruct, : Studies with NAs omitted from model fitting.
resStruct         # print the results of the moderator analysis
## 
## Mixed-Effects Model (k = 145; tau^2 estimator: DL)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0293 (SE = 0.0084)
## tau (square root of estimated tau^2 value):             0.1711
## I^2 (residual heterogeneity / unaccounted variability): 79.61%
## H^2 (unaccounted variability / sampling variability):   4.90
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity: 
## QE(df = 143) = 701.2270, p-val < .0001
## 
## Test of Moderators (coefficient(s) 2): 
## QM(df = 1) = 3.8786, p-val = 0.0489
## 
## Model Results:
## 
##                         estimate      se     zval    pval    ci.lb
## intrcpt                   0.2696  0.0210  12.8574  <.0001   0.2285
## mcdanielStruct$structu   -0.0785  0.0398  -1.9694  0.0489  -0.1566
##                           ci.ub     
## intrcpt                  0.3106  ***
## mcdanielStruct$structu  -0.0004    *
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Note that the result is (barely) significant. Note the ā€˜uā€™ at the end of the term below the intercept. This is the difference between structured and unstructured interviews (unstructured interview scores are slightly less correlated with job performance).