

No Name What it does?

1 attach Attach your data frame to your working environment.

2 boxplot Creates a boxplot.

3 confint
A metafor package function that gives you the confidence intervals of

effect sizes.

4 cumul A metafor package function that does cumulative meta analysis.

5 data Attach a data frame to your working environment.

6 detach Remove an attached data frame from your working environment.

7 dir Gives the names of files and folders in your workind directory.

8 escalc
A metafor package function. Calculates effect size from various

statistics.

9 forest A metafor package that creates forest plots.

10 funnel A metafor package that creates funnel plots.

11 getwd Gives your location on your computer directory (folder) tree.

12 hist Creates a histogram.

13 install.packages Install packages from cran repositories.

14 leave1out A metafor package that conducts a leave-one-out meta analysis.

15 library
Attaches a package to your workin environment. In order to use

packages, you have to use this function.

16 ls Lists all the objects that is in your working environment.

17 order Orders a data frame

18 predict

19 radial A metafor function that creates a radial plot.

20 read.table Read data from a file that is in csv kind of text format.

21 read.xlsx An xlsx package function that reads data from Excel files.

22 regtest A metafor package function

23 rma A metafor package function

24 rstudent A metafor package function

25 sd Calculates the standard deviation of a vector.

No Name What it does?

26 setwd With this you can determine your working directory.

27 summary Gives a summary of most of the data formats within R.

28 trimfill A metafor package function

29 $ (dollar sign)
Used to select a specific column or columns, or in other words variables

from a data frame.

Command: install.packages

Function: This functions is used to install packages. A package is a collection of functions that you use,

help files that you can learn about the functions, and also possible data set that can be used to apply

functions.

Example:

> install.packages("metafor")

trying URL

'http://cran.mirror.garr.it/mirrors/CRAN/bin/windows/contrib/3.1/metafor_1

.9-5.zip'

Content type 'application/zip' length 2027094 bytes (1.9 MB)

opened URL

downloaded 1.9 MB

package ‘metafor’ successfully unpacked and MD5 sums checked

The downloaded binary packages are in

 C:\Users\mehmet-

odtu\AppData\Local\Temp\RtmpGWJ9yg\downloaded_packages

> install.packages('xlsx')

Installing package into ‘C:/Users/mehmet-odtu/Documents/R/win-library/3.1’

(as ‘lib’ is unspecified)

trying URL

'http://cran.mirror.garr.it/mirrors/CRAN/bin/windows/contrib/3.1/xlsx_0.5.

7.zip'

Content type 'application/zip' length 400944 bytes (391 KB)

opened URL

downloaded 391 KB

package ‘xlsx’ successfully unpacked and MD5 sums checked

The downloaded binary packages are in

 C:\Users\mehmet-

odtu\AppData\Local\Temp\RtmpmYyCVz\downloaded_packages

As you can see, the command given above installs the package metafor so that you can use it to conduct

meta-analyses. Any package you can find in http://cran.r-project.org/ can be installed this way.

For more information about this command, type ?install.packages and press Enter.

Command: library

Function: Library load installed packages, so that you can use them in your current R session.

Example:

> library(metafor)

Loading 'metafor' package (version 1.9-5). For an overview

and introduction to the package please type: help(metafor).

> library(xlsx)

Loading required package: rJava

Loading required package: xlsxjars

This commands loads the metafor package. After giving this command you can be able to use metafor

package. Remember, installing a package is not the same thing as loading a package.

For more information about this command, type ?library and press Enter.

Command: read.xlsx

Function: Imports content of an Excel file for you to use within R. As you can see from the previous

command there is an Excel file named as Devine.xlsx. Within read.xlsx function you have to specify

http://cran.r-project.org/

the position of the tab your data resides in. sheetIndex=1 argument of read.xlsx function. Or else,

you can use sheetName argument, like sheetName=’data’, or

sheetName=’whatisyoursheetname’.

You have to assign the result of the read.xlsx function’s output to a variable in order to use, as shown

below. read.xlsx function creates a data frame.

Example:

> newData <- read.xlsx('Devine.xlsx', sheetIndex=1)

> newData

 study d w v pub

1 1 0.57 19.226568 0.05201136 D

2 2 0.42 8.320691 0.12018233 J

3 3 0.35 8.867126 0.11277611 J

4 4 0.08 4.996160 0.20015371 D

5 5 -0.15 4.986527 0.20054037 D

Here you can see the first five lines of newly created data set that is named as newData.

The name that you define is up to you. You can name it as new_data or new.data or NewData or

New_Data. R is case sensitive so just remember the exact name that you give to your objects, and use it.

For more information about this command, type ?read.xlsx and press Enter.

Command: str

Function: Using this function you can see the variables of the data frame that was created with the use of

read.xlsx() function.

Example:

> newData <- read.xlsx('Devine.xlsx', sheetIndex=1)

> str(newData)

'data.frame': 54 obs. of 5 variables:

 $ study: num 1 2 3 4 5 6 7 8 9 10 ...

 $ d : num 0.57 0.42 0.35 0.08 -0.15 -0.23 0.88 0.56 1.27 0.69 ...

 $ w : num 19.23 8.32 8.87 5 4.99 ...

 $ v : num 0.052 0.12 0.113 0.2 0.201 ...

 $ pub : Factor w/ 2 levels "D","J": 1 2 2 1 1 1 2 2 2 2 ...

Command: summary

Function: This function give you minimum, maximimum, first, and third quantiles, and mean, median of

the variables in your data set.

Example:

> summary(newData)

 study d w v pub

 Min. : 1.00 Min. :-0.2300 Min. : 3.207 Min. :0.01294 D:21

 1st Qu.:14.25 1st Qu.: 0.2550 1st Qu.: 4.989 1st Qu.:0.06816 J:33

 Median :27.50 Median : 0.4600 Median : 8.303 Median :0.12044

 Mean :27.50 Mean : 0.4963 Mean :12.123 Mean :0.14087

 3rd Qu.:40.75 3rd Qu.: 0.6975 3rd Qu.:14.672 3rd Qu.:0.20044

 Max. :54.00 Max. : 1.3800 Max. :77.300 Max. :0.31178

If you want to select only some of the variables from a data frame to summarize, you can simply use column

operator. You can see an instance of this if you inspect the code listing below.

> summary(newData[, 2:5])

 d w v pub

 Min. :-0.2300 Min. : 3.207 Min. :0.01294 D:21

 1st Qu.: 0.2550 1st Qu.: 4.989 1st Qu.:0.06816 J:33

 Median : 0.4600 Median : 8.303 Median :0.12044

 Mean : 0.4963 Mean :12.123 Mean :0.14087

 3rd Qu.: 0.6975 3rd Qu.:14.672 3rd Qu.:0.20044

 Max. : 1.3800 Max. :77.300 Max. :0.31178

Command: names

Function: Similar to str() function, but gives a shorter output. Using this function you can see the

variables of the data frame that was created with the use of read.xlsx() function.

Example:

> newData <- read.xlsx('Devine.xlsx', sheetIndex=1)

> names(newData)

[1] "study" "d" "w" "v" "pub"

Command: $

Function: Using dollar sign operator, you can select a specific variable from a data frame.

Example:

> newData$pub

 [1] D J J D D D J J J J J J J J J J J J J J J J J D D D D D D D J D J J J

D J D D D D D D D D J J J J J J J J J

Levels: D J

> newData$d

 [1] 0.57 0.42 0.35 0.08 -0.15 -0.23 0.88 0.56 1.27 0.69 0.62

0.46 0.19 1.36 1.36 1.26 1.38 1.00 0.59

[20] 0.32 0.59 0.16 0.70 -0.20 -0.08 0.39 0.29 0.58 0.80 0.74

0.04 0.40 0.30 -0.02 0.48 1.10 0.42 0.77

[39] 0.52 1.08 0.27 0.12 0.34 0.21 -0.21 0.63 0.28 0.25 0.20

0.46 0.37 0.52 0.78 0.54

In the example above, using the dollar sign operator ($) variables of d and pub were selected.

Command: attach and detach

Function: Using attach()you can reach your data frame variables without using the name of the data

frame. Just the opposite of attach() function, detach() function removes your data frame names

from search path.

Example:

> pub

Error: object 'pub' not found

> newData$pub

 [1] D J J D D D J J J J J J J J J J J J J J J J J D D D D D D D J D J J J D J D D D D D D D D J J

[48] J J J J J J J

Levels: D J

> attach(newData)

> pub

 [1] D J J D D D J J J J J J J J J J J J J J J J J D D D D D D D J D J J J D J D D D D D D D D J J

[48] J J J J J J J

Levels: D J

> detach(newData)

> pub

Error: object 'pub' not found

As you can see above, pub is a variable of newData data frame and you can only reach this variable using $

(dollar sign notation) before running attach() function. But after you attach a data frame to the working

environment you can reach a variable just by using its name alone. After attach() you do not have to use

data frame name and $ sign.

After your work is done, do not forget to detach your data frame from the working environment.

For more information about this command, type ?attach and press Enter.

Command: 1:10

Function: This command creates a sequence of numbers. This operator is known as colon operator (i.e., :

). It can be very useful at times for selecting specific variables from a data frame.

Example:

> 1:10

 [1] 1 2 3 4 5 6 7 8 9 10

> 1:43

 [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

24 25 26 27 28

[29] 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

> 1:15

 [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

As you can see 1:10 creates a vector of numbers from 1 to 10. But you have to assign this data to use it

later. So next commands are much more useful.

> dataSet <- 1:15

> dataSet

 [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A sequence of numbers from 1 to 15 assigned to dataSet variable.

> str(newData)

'data.frame': 54 obs. of 5 variables:

 $ study: num 1 2 3 4 5 6 7 8 9 10 ...

 $ d : num 0.57 0.42 0.35 0.08 -0.15 -0.23 0.88 0.56 1.27 0.69 ...

 $ w : num 19.23 8.32 8.87 5 4.99 ...

 $ v : num 0.052 0.12 0.113 0.2 0.201 ...

 $ pub : Factor w/ 2 levels "D","J": 1 2 2 1 1 1 2 2 2 2 ...

> newData[, 1:3]

 study d w

1 1 0.57 19.226568

2 2 0.42 8.320691

3 3 0.35 8.867126

4 4 0.08 4.996160

5 5 -0.15 4.986527

6 6 -0.23 4.968439

7 7 0.88 3.207351

8 8 0.56 3.375284

9 9 1.27 5.436694

10 10 0.69 5.673344

With the use of 1:3, you can be able to select first three variables from newData data frame. Beware of

the comma before 1:3 and also the use of square brackets. You have to use this comma and square

bracket around 1:3 to select columns. This is a special notation to select columns (variables) from a data

frame.

Command: ls

Function: Used to list all objects in the current working environment.

Example:

> ls()

[1] "newData"

You can see the variables that you have created this way, as shown above code listing.

Command: getwd

Function: Returns an absolute filepath representing the current working directory of the R. It means ‘get

working directory’. Directory is synonym of folder.

Example:

> getwd()

[1] "C:/Users/mehmet-odtu/Desktop"

Useful to see in which folder you are.

Command: dir

Function: Shows you the files that are in the working directory. As previously stated you can see your

working directory with getwd function.

Example:

> dir()

 [1] "1_Basics.ppt"

 [2] "1b_UsingExcel.pptx"

 [3] "1c_LoadingBorensteinEtAlDataIntoR.pptx"

 [4] "desktop.ini"

 [5] "Devine.xlsx"

 [6] "hsMethodScripts"

 [7] "michelle krummel youtube latex tutorials"

 [8] "psy559-research-proposal-makaleleri"

 [9] "psy614week9classNotes"

[10] "R_CommandsFunctions.docx"

[11] "R_CommandsFunctions.pdf"

[12] "slr"

Here are all of the files in my desktop. Using this, you can see if you have pasted an excel data file in the

same working directory as R.

Command: read.table

Function: This function can be used to read csv (comma separated values) type of data files. Excel and

SPSS can be used to create csv type of data files. Files of the type csv are ordinary text files and data

within this files are just separated by commas, as the name implies.

Basic use is like that: read.table(file, header = FALSE, sep = ""). First you have to

write the name of the file. header argument determines if the file has column names on the top line. If

your file has variable names on the top line, you should write header = TRUE while using the

function. sep argument determines the type of separator. sep=”,” means that values within the file

are separated by commas. But besides commas, csv files may use semicolons (i.e., ;), or colons (i.e., :) to

separate data within the file.

Example:

> read.table('Devine.csv', header=TRUE, sep=';')

 study d w v pub

1 1 0.57 19.226568 0.05201136 D

2 2 0.42 8.320691 0.12018233 J

3 3 0.35 8.867126 0.11277611 J

4 4 0.08 4.996160 0.20015371 D

5 5 -0.15 4.986527 0.20054037 D

6 6 -0.23 4.968439 0.20127047 D

As always, you have assign the output of the function to a variable in order to use it later.

> anotherDataSet <- read.table('Devine.csv', header=TRUE, sep=';')

> anotherDataSet

 study d w v pub

1 1 0.57 19.226568 0.05201136 D

2 2 0.42 8.320691 0.12018233 J

3 3 0.35 8.867126 0.11277611 J

4 4 0.08 4.996160 0.20015371 D

5 5 -0.15 4.986527 0.20054037 D

You can find more information on the use of this function by ?read.table command.

Command: sd

Function: This function computes the standard deviation of the values.

Example:

> sd(newData$d)

[1] 0.407761

You can find more information on the use of this function by ?sd command.

Command: boxplot

Function: This function computes the standard deviation of the values. In the example below a boxplot of

d variable of newData data frame is created with boxplot().

Example:

> boxplot(newData$d)

You can find more information on the use of this function by ?boxplot command.

Command: order

Function: Helps you to order your variable from smaller values to larger values.

Example:

> newData$d

 [1] 0.57 0.42 0.35 0.08 -0.15 -0.23 0.88 0.56 1.27 0.69 0.62

[12] 0.46 0.19 1.36 1.36 1.26 1.38 1.00 0.59 0.32 0.59 0.16

[23] 0.70 -0.20 -0.08 0.39 0.29 0.58 0.80 0.74 0.04 0.40 0.30

[34] -0.02 0.48 1.10 0.42 0.77 0.52 1.08 0.27 0.12 0.34 0.21

[45] -0.21 0.63 0.28 0.25 0.20 0.46 0.37 0.52 0.78 0.54

> order(newData$d)

 [1] 6 45 24 5 25 34 31 4 42 22 13 49 44 48 41 47 27 33 20 43 3 51

[23] 26 32 2 37 12 50 35 39 52 54 8 1 28 19 21 11 46 10 23 30 38 53

[45] 29 7 18 40 36 16 9 14 15 17

Previous code gives an instance of order() function behavior. This tehavior of the order() function is

kind of counterintuitive at first, but it is quite logical. It gives the place of the value that should be in the

first place, and the second value that should be inserted to the second place in an ascending ordering, and

so on. In the example above, order() function returns 6 as the first value, and 45 as the second value.

If you look at the newData$d variable you can see that in the 6th place you have a value of -0.23 and in

the 45th place you have a value of -0.21. So, in an ascending ordering these values must be selected as

the first and second value. This way, order() function gives you the place of the values that should be

used in an ascending order.

