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Abstract 

 

We describe the random-effects variance component (REVC) and its uses in meta-

analysis.  Because the REVC is an estimate, there is uncertainty about its population 

value.  When interpreting the results of a meta-analysis, it is useful to quantify the 

uncertainty about the REVC by computing a confidence interval.  Three methods for 

computing such confidence intervals are described and illustrated with data from a meta-

analysis of the Pygmalion effect in organizations.  We recommend that meta-analysts 

compute and report confidence intervals for the REVC.  
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Confidence Intervals for the Random-Effects Variance Component 

What is the Random-Effects Variance Component? 

 When we conduct a meta-analysis, we collect an empirical distribution of effect 

sizes.  This distribution has a mean and a variance.  Because the individual studies have 

finite sample sizes, part of the variance of the distribution will be due to sampling 

variance.  That is, even if all underlying effect sizes were the same, we would still see 

some variance in our collection of effect size estimates because of sampling error.  

Fortunately, we can estimate the amount of variance due to sampling error and subtract 

that, leaving a residual variance.  The residual is an estimate of how much variance is due 

to differences in infinite-sample effect sizes.  The variance of infinite-sample effect sizes 

is called the random-effects variance component.  Another way of saying this is to 

imagine that all our studies were estimated with infinite sample sizes, so that we had 

parameters for each locality.  If we computed the variance of effect sizes for those 

studies, we would have an estimate of the random-effects variance component.  The 

REVC can either be of the ‘bare bones’ variety, or it can be estimated by taking into 

account other artifacts such as range restriction and reliability for the collection of 

studies.   

 In the literature on validity generalization (e.g., Hunter and Schmidt, 1990), the 

random-effects variance component is usually represented by  

2
ρσ . 

The same random-effects variance component in the writings of Hedges and colleagues 

(e.g., Hedges & Olkin, 1985; Lipsey & Wilson, 2002; Overton, 1998) is usually 

represented as either: 
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2
τσ  or as . 2τ

I/O folks think in terms of ; others think in terms of .  There are a couple of different 

ways of estimating the random-effects variance component, but they all essentially 

subtract sampling variance from observed variance. 

ρ τ

Why is the REVC important? 

 The REVC is important for several reasons.   First, the REVC is an estimate of the 

variability of infinite-sample effect sizes.  That is, it shows the impact of context on the 

size of the association between two constructs.  It is an overall estimate of the impact of 

moderator variables.  As the REVC approaches zero, there is no room for moderators to 

work and a single number can legitimately summarize the lawful relation between two 

constructs.  On the other hand, as the REVC increases, then the infinite sample effect 

sizes vary across localities.  There are moderators to be discovered and a scientific story 

waiting to be told.  When the REVC is large, the effect size can be large and positive in 

one context but small or even negative in another context. 

 Second, for I/O psychologists, the REVC is important because it is used along 

with the estimate of the population mean to compute a lower bound for a credibility 

interval in validity generalization studies.  This lower bound represents a plausible ‘worst 

case’ scenario and drives inferences about the transportability of tests.  In other words, if 

the lower bound value is large, we can be confident that the test will be valid in new 

contexts.  If the REVC is large, it is difficult to establish the transportability of tests. 

 Third, in maximum likelihood estimation procedures for meta-analysis, the REVC 

is a weight used in computing the overall mean of the effect sizes in the meta-analysis.  

The random-effects method developed by Hedges incorporates the REVC in its overall 
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estimate of the mean, as does the method presented in this symposium by Raju and 

Drasgow.  If the REVC is large, the optimal weights approach unit weights.  If the REVC 

is small, the optimal weights approach a function of Ni, the local sample sizes 

(technically, the inverse of the expected sampling error for each study). 

 Fourth, the REVC is used as the weight for the prior distribution in empirical 

Bayes applications.  That is, the relative importance of the meta-analysis and the local 

study effect size will depend on the size of the REVC.  If the REVC is large, the local 

study will carry most of the influence.  If the REVC is small, the meta-analysis will carry 

most of the influence.   

 For all these reasons, the REVC is important.  The REVC has a major impact on 

the conclusions or inferences that flow from the meta-analysis.  For the implications of 

the meta-analysis to be correct, the REVC needs to be accurate.  That is, the REVC must 

be well estimated for us to have much confidence in certain conclusions drawn from the 

meta-analysis. 

How well is the REVC Estimated? 

 The short answer to this question is that typically, we don’t know.  There is 

reason to believe that often times the REVC is not well estimated.  Suppose, just for the 

sake of argument, that we found a collection of k studies that had no sampling error 

because each was computed based on an infinite N, that isfinite k, infinite N.  The 

distribution would have some mean and variance, and that variance would be a direct 

estimate of the REVC.  There would be no need to subtract sampling variance. The 

sampling distribution of the variance is known to follow the chi-square distribution, and 

chi-square can be used to construct a confidence interval for the variance.  If we had 
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infinite-sample effect sizes, we could use chi-square to find confidence intervals.  In the 

situation just described, the size of the confidence interval would depend on k, the 

number of studies and not on N, the study sample sizes.  If k is small, as it often is in 

meta-analyses, then the variance will not be estimated accurately, or to put it more 

technically, the variance of the sampling distribution of the estimated REVC will be large 

and so will the size of the confidence interval around the estimated REVC.  The effect of 

having finite, rather than infinite, sample sizes is to make the estimation of the variance 

even more difficult.  Because of sampling error, we still have k studies, but we are not 

sure about the real values of the effect sizes, because of sampling error.   

 Therefore, we argue that researchers should describe the precision of their 

estimates.  We should describe the probable error of our results.  We should at least 

calculate confidence intervals for the REVC both to help us as researchers to understand 

the limits of our knowledge and also to communicate the uncertainty of our findings to 

others.  Next we present and illustrate three ways to estimate confidence intervals for the 

REVC.   

The data that we will use for illustration are taken from the meta-analysis of 17 

studies by McNatt (2000) on the Pygmalion effect in organizations.  In a typical study, 

managers are told that some employees are expected to be especially productive.  Other 

employees serve as the control participants.  At a later time, the job performance of all 

employees is measured to see whether the ‘exceptional’ employees perform better than 

the controls.  The ‘exceptional’ employees are chosen at random, and so are not really 

any different than the controls.  The effect size is d, the standardized mean difference, 

computed as the exceptional mean minus the control mean divided by the pooled 
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standard deviation.  McNatt used the Hunter and Schmidt (1990) method of analysis and 

adjusted d for sampling error and unreliability in the measure of job performance.  He 

found a mean d of 1.13 and a random-effects variance component equal to .60.  How 

much uncertainty is associated with this value?  To answer this question, we need to put 

confidence intervals around the .60 value.  If we had infinite-sample studies, we could 

put confidence intervals about the REVC using the Chi-square distribution: 
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In our example, the values would be 

95.
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
 ≤≤ τp ; the resulting interval is .33 to 1.39.   

This interval is certainly too small as it fails to consider sampling error at the study level.  

Method 1:  Approximate Distribution Method 

 Biggerstaff and Tweedie (1997) developed three methods of computing 

confidence intervals for the random-effects variance components.  Two of the methods 

are asymptotic and appropriate for meta-analyses based on large numbers of studies; 

those methods are not described here.  The third method is appropriate for small k, and so 

is appropriate for most situations encountered by I/O psychologists.  The method is based 

on an estimator of the random-effects variance component developed by DerSimonian 

and Laird (1986).  Like the Hunter and Schmidt method, the DerSimonian and Laird 

method begins by finding a weighted mean and sum of squared deviations from the 

mean.  The weights are the inverse of the sampling variance for each study rather than the 

sample size.   

The estimated sampling variance of d is 
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Then the DerSimonian and Laird estimator of the REVC is 
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It may not look like it, but what is happening is that the sum of squares, Q, is basically 

chi-square, and its expected value is basically (k-1), so we are subtracting expected 

sampling variance from observed variance.  The weights (wi) affect the observed 

variance, so the denominator adjusts the result for the influence of the weights.  If (k-1) is 

greater than Q, the result will be negative and set to zero.  What Biggerstaff and Tweedie 

did was to figure the approximate distribution of   They then found upper and lower 

bounds of the distribution, plus provided some handy code in SAS for calculating the 

bounds.  Most psychologists will not find the equations meaningful, but here they are (the 

interested reader is referred to Biggerstaff and Tweedie, 1997, for further detail). 
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A SAS program with all the analyses reported here can be found on Brannick’s website 

under ‘Software’ (so you don’t have to understand the math to calculate the confidence 

intervals using their method). For the McNatt data, using the DerSimonian and Laird 

method and no corrections for unreliability (i.e., the bare bones method), the estimates of 

the mean and REVC are 1.09 and .46, respectively.  If the 17 studies had no sampling 

error and provided a variance estimate of .46, we could use chi-square to calculate a 

confidence interval.  The interval would be .26 to 1.08 in this case.  The Biggerstaff and 

Tweedie estimated confidence interval is .18 to 2.59, clearly a large interval, and larger 

than the chi-square estimate, as it should be.  As the study sample sizes increase, the 

Biggerstaff confidence intervals approach the chi-square values. 

 Because it is based on statistical theory, this method has much to recommend it.  

However, it cannot be applied to the Hunter and Schmidt estimates because of the 

difference in weights.  It also does not incorporate multiple corrections (reliability, range 

restriction).  It is based on the assumption that both the distribution of sampling error and 

the distribution of delta (infinite-sample effect sizes) are normal. 

Method 2:  Bootstrap Estimates 

 Bootstrap estimates of confidence intervals in meta-analysis were introduced by 

Switzer, Paese and Drasgow (1992).  What you do with the bootstrap is to take repeated 

samples with replacement from your dataset.  You compute estimates from each sample 

to create a sampling distribution.  Then you look at the tails of the sampling distribution 

to estimate confidence intervals.  We wrote a SAS program to do this for the McNatt data 

and generated 5000 trials.  The confidence interval ranges from .16 to 1.29 (see Table 1).  
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These numbers are smaller than the estimates provided by Biggerstaff and Tweedie, 

particularly on the upper tail.  However, these estimates still show a rather large interval. 

 An advantage of the bootstrap method is that it makes no assumption about the 

distribution of the data other than that the data in the meta-analysis are representative of 

the population of studies to which we wish to generalize.  On the other hand, the 

bootstrap estimates can be erroneous if the small sample of data is not representative 

because of outliers, bias in the selection of studies, and so forth. 

Empirical Method with Assumed Distributions 

A third method is similar to the bootstrap in that it also makes use of repeated 

sampling.  The difference is that in this method, assumptions are made about the 

underlying distribution of effect sizes and reliability coefficients as is typically done in 

Monte Carlo studies, e.g., Hall and Brannick (2002).  Instead of repeatedly sampling 

from the raw data, the raw data are used to set parameters of the underlying distribution 

of effect sizes and reliability coefficients.  The underlying distributions are used to 

simulate studies, which become the basis for each meta-analysis.  Like the bootstrap, 

thousands of iterations are used to compute an empirical distribution of REVCs.  The 

tails of the distribution are then used to construct the confidence intervals, just as in the 

bootstrap method.   

In the McNatt data, the estimate of delta is 1.13 and the REVC is .60.  We 

assumed that the distribution of effect sizes was normal, with a mean of 1.13 and a 

variance of .60.  We sampled from this distribution to find local population values.  The 

McNatt reliability values ranged from .65 to .95.  We assumed that reliability is 

uniformly distributed in this interval, and sampled from this distribution to simulate a 
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local reliability.  We attenuated the local population effect sizes for unreliability, and then 

took samples of sizes that McNatt found from these local values.  We then computed 

meta-analyses on the simulated data and found an estimated REVC.  After doing so 5000 

times, we had an empirical distribution of REVC that we used to find confidence 

intervals.  The resulting interval ranges from .13 to 1.28 (see Table 1).  

  The empirical method should work well so long as the assumed distributions are 

accurate.  If the data are representative of the population of studies, the bootstrap method 

might be preferred; if they are not, then the empirical method may provide better 

estimates.  Of course we do not know the underlying distributions of effect sizes and 

reliabilities, so results of the empirical method may be viewed with some suspicion.  On 

the other hand, the empirical method can be used with unlimited numbers of 

distributions, so that the researcher can see what effect changes in the underlying 

distributions has on the confidence interval.  If even pathological distributions fail to 

affect the confidence intervals much, then one can bolster confidence in the estimates. 

Overall Results 

All of the methods showed several common points: 

1. The estimated REVC for the Pygmalion studies is large; in all cases, 

the bottom of the confidence intervals are well above zero. Therefore, 

the overall mean Pygmalion effect provided by the meta-analysis is 

only an approximate value and may not apply to the local context of 

interest.  That is, the Pygmalion effect at work appears to be quite 

variable.  Further research is needed to describe and understand the 

sources of variance in outcomes across studies. 
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2. The confidence intervals are all large, indicating that the data are 

consistent with a wide range of population values.  In other words, 

there is a good deal of uncertainty remaining about the magnitude of 

the REVC in studies of the Pygmalion effect at work. 

There were also differences among the methods.  The Biggerstaff and Tweedie 

method produced estimates that were larger on both tails than the estimates 

provided by the other two methods.  Estimates from the two Monte Carlo methods 

were quite similar.   On the upper tail, both Monte Carlo methods produced 

estimates that were more narrow than the chi-square method. The chi-square 

method should produce the narrowest confidence intervals about REVC.  Thus it 

appears that the Monte Carlo methods may be overly optimistic with regard to the 

size of interval.  Further research is warranted on the behavior of each of the 

techniques. 

Conclusions 

Random-effects meta-analyses produce estimates of the Random Effects 

Variance Component.  The REVC is important for several reasons, including its 

role in the search for moderators, the computation of the credibility value, the 

computation of the overall mean effect size, and the computation of empirical 

Bayes estimates.  There is uncertainty about the actual value of the REVC; a 

meta-analysis only produces an estimate of the REVC.  We showed 3 methods of 

constructing confidence intervals for the REVC, and we recommend that 

researchers routinely compute and report the confidence intervals of their choice 

in future meta-analyses.   
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Table 1 

Summary of Results 

Method REVC Confidence Interval 

Chi-square (H&S) .60 .33 to 1.39 (hypothetical) 

Chi-square (D&L) .46 .26 to 1.08 (hypothetical) 

Biggerstaff & Tweedie .46 .18 to 2.59 

Bootstrap .60 .16 to 1.29 

Empirical Assumed .60 .13 to 1.29 
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