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Abstract 

This paper briefly outlines the advantages of maximum likelihood (ML) estimation over 

other estimation methods. Then, the recently developed ML estimation procedures of 

Raju and Drasgow (2003) are described for use in validity generalization. Two examples 

are presented, comparing the traditional VG estimation methods based on the method of 

moments with the new ML estimation methods, across three different VG 

models/scenarios (bare-bones, use of artifact distributions, and direction corrections). The 

need for assessing the accuracy and comparability of the traditional and ML estimation 

procedures is addressed.      
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Maximum Likelihood Estimation in Validity Generalization with Examples 

 Since Schmidt and Hunter’s seminal publication in 1977 (Schmidt & Hunter, 

1977) on situational specificity, the assessment of the generalizability of organizational 

interventions has received a great deal of attention among researchers and practitioners, 

especially among industrial/organizational (I/O) psychologists concerning the 

generalizability of the validity of predictors across organizations. The art and science of 

validity generalization (VG) revolves around the estimation of the mean and variance of 

population validities. That is, given a set of k validity coefficients (correlations between 

the same or similar predictors and criteria in the same or similar jobs) obtained from 

samples drawn from k different populations, one is interested in obtaining an estimate of 

the mean and variance of population validities in order to establish whether the validity in 

question is (1) significant and substantial and (2) generalizable across populations. An 

estimate of the mean of population validities is used to answer the first question and an 

estimate of the variance of population validities is used to answer the second question of 

generalizability.   The estimation of the mean and variance of population validities and 

the resulting substantive interpretations is the crux of VG research and practice.  

There are currently several VG models and procedures for estimating the mean 

and variance of population validities. Some models/procedures are designed for use with 

observed correlations corrected for unreliability and range restriction, while others are 

not. Some models/procedures are couched in observed correlations, while others use 

transformations of such correlations to estimate the mean and variance of population 

validities. The statistical estimation methods employed also vary across procedures. For 

example, the early estimation procedures relied mostly on the method of moments, but 
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some of the newer procedures use estimation methods based on the maximum likelihood 

principle.  Recently, Bayesian estimation techniques have been used by VG researchers 

(Brannick, 2001).  Statistical estimation procedures (e.g., the method of moments, 

maximum likelihood estimation, method of least squares, and Bayesian estimation) are 

described in standard texts on mathematical statistics (for example, Lehmann, 1983; 

Mood & Graybill, 1963; Rao, 1973).  

The use of different statistical estimation methods has, at times, led to some 

confusion and controversy among VG researchers and practitioners. While the choice 

among the different statistical estimation methods may not be an easy one, especially for 

practitioners, the availability of procedures for estimating the VG parameters (mean and 

variance of population correlations) based on different statistical estimation methods 

would be very desirable. The choice of estimation method is usually based on a 

consideration of optimality.  For example, ceteris paribus, an unbiased estimator should 

be preferred to a biased estimator.  The early VG estimation procedures were based on 

the method of moments.  The statistical properties of estimates based on the method of 

moments are not necessarily optimal. Maximum likelihood estimation  is optimal in 

several important respects. For example, as shown by Kendall and Stuart (1977; 1979, 

pp. 38-81), maximum likelihood (ML) estimates are consistent and asymptotically 

efficient.  Additional information about the ML estimates may be found in Lehmann 

(1983), Raju and Drasgow (2003), and Rao, (1973). These are briefly described in the 

paragraphs below. 

Even though the ML estimation method has received substantial attention lately 

among VG researchers (Brannick, 2001; Erez, Bloom, & Wells, 1996; Hedges & Olkin, 
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1985), much of it is confined to Fisher’s z-transformation of an observed correlation or 

validity coefficient. ML estimation procedures for  VG parameters, when correlations are 

corrected for unreliability and range restriction, have not been previously derived. Given 

the many statistically optimal properties that ML estimators enjoy, it is natural and 

desirable to extend the ML estimation technique to VG situations in which correlations 

are corrected for unreliability in the predictor and criterion and direct range restriction on 

the predictor. Therefore, it is the purpose of this paper to briefly outline the recent work 

of Raju and Drasgow (2003) on the ML estimation in the context of VG. It should be 

noted that for the purposes of the flow of presentation and comprehensiveness, ML 

estimation methods are presented for both corrected and uncorrected correlations.  

Moreover, in this presentation we will only deal with correlation coefficients, not Fisher’s 

z-transformations of such correlations. Readers interested in the use of Fisher’s z 

transformation in VG analysis are referred to Erez et al. (1996) and Hedges and Olkin 

(1985). 

Some Preliminaries 

 In this section, following Raju and Drasgow (2003), some well known results 

about correlations and a brief description of the fixed-effects and random-effects models 

will be presented. These models are receiving a great deal of attention lately, especially 

with respect to which VG parameters are estimated.  

Single Population                                       

Let the  represent the correlation between a predictor (x) and a criterion (y) in a 

sample of size n drawn from a population. Let the correlation between x and y in the 

xyr
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population be denoted as . Let the hypothesized relationship between   and  be 

expressed as:   

xyρ xyr xyρ

ρ

er xyxy += ρ ,          (1) 

and let us further assume that r  is an unbiased estimate of  and is normally 

distributed.  Strictly speaking, is not an unbiased estimate of ; in fact, it 

underestimates (Stuart & Kendall, 1977; Hedges & Olkin, 1985). According to 

Hedges (1989) and Hedges and Olkin (1985), this bias is seldom of practical significance 

if the sample size is not too small. Therefore, the current assumption may be restated as 

that the asymptotic (or large sample) distribution of r  is approximately normal with a 

mean of  and an asymptotic variance of . According to Kendall and Stuart (1977), 

the asymptotic mean/expectation and variance of r can be expressed as: 

xy
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When  is substituted for in Equation 3, this equation may be rewritten as: xyr xy

1
)1(

ˆ
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2

−

−
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Several Populations 

Let us now consider k different populations drawn at random from a universe of 

populations and denote the observed correlation, based on a sample (of size n ) drawn 

from population i, be denoted as and the population correlation as . A major 

goal of VG methods is to estimate the mean and variance of population validities or 

i

ii yx
r

ii yx
ρ
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correlations ( ). Another equally important goal is to develop appropriate confidence 

intervals for estimates of the mean. With this information at hand, researchers and 

practitioners can assess the degree to which validity is generalizable across organizations, 

provided that we continue to sample from the same universe of populations. Following 

Raju and Drasgow (2003), procedures for estimating the mean and variance of population 

validities are presented below using the well known ML approach. Prior to presenting 

these procedures, the fixed-effects and random-effects models are briefly described.    

ii yx
ρ

== ...

i +τ

τ

Fixed- and Random-Effects Models 

In the meta-analysis/VG literature, a model is said to be fixed (or homogeneous) 

if values are considered identical across the k populations (drawn at random from a 

universe of populations with a constant correlation) so that the variance of values is 

zero. That is, 

ii yx
ρ

ii yx
ρ

ρρρρ ==
kk yxyxyx 2211

.        (5) 

In view of Equation 5, the fixed-effects model may be written as: 

iyx er
ii

+= ρ .          (6) 

In Equations 5 and 6,  refers to the common population validity across the universe of 

populations. In the random-effects model, values may not be equal across 

populations. That is,  

ρ

ii yx
ρ

ieyxr ii
+= ρµ ,         (7) 

where is the grand mean in the sense of the analysis of variance (ANOVA) 

terminology and . In the fixed-effects model,  

ρµ

ρµρ −=
ii yxi 0=iτ
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for all i. In the random-effects model, , which is typically not equal to zero.  

Moreover, the magnitude of  is of critical importance in answering the question 

of whether validity is generalizable.  

22
ρτ σσ =

22
ρτ σσ =

Maximum Likelihood Estimation with Uncorrected Correlations  

 In this section, we will describe procedures for estimating the relevant VG 

parameters when the observed correlations are not corrected for unreliability and/or range 

restriction. For ease of presentation, we will refer to this scenario as the ‘bare-bones’ VG 

model.         

Fixed-Effect Model 

 In view of the fixed-effects VG model given in Equation 6, the (asymptotic) mean 

and variance of an observed correlation or validity coefficient may be expressed as: 

ρ=)(
ii yx

rE ,          (8)  

22
iiyix er σσ = .           (9) 

Using Equations 8-9, the ML estimate of , under the assumption that the sample 

validities are normally distributed, may be written as:  

ρ
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where 
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1
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iw σ
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Equation 10 can be used to solve for . According to Equation 10, the ML estimate of  

is a weighted average of the observed correlations from k different populations. It should 

ρ ρ
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be noted that in a fixed-effects model, s do nor vary from population to population and, 

hence, there is no need to estimate their variance.  

ρ

The weight for each validity coefficient is the reciprocal of its error variance. 

Typically, the bigger the sample size, the smaller the error variance and hence the bigger 

the weight. That is, validity coefficients based on bigger samples will receive bigger 

weights than validities based on smaller samples. In view of Equation 4, an estimate of 

each weight may be written as 

 22 )1(
1ˆ
ii yx

i
i r

n
−

−
=w           (12) 

and used in Equation 10 to solve for . It should be noted that Equations 10 and 11 are 

not new and were previously presented by Hedges and Olkin (1985); Erez et al. (1996) 

provided similar equations for Fisher’s z transformation of an uncorrected correlation. 

According to Kendall and Stuart (1977), the maximum likelihood estimate  is 

(asymptotically) normally distributed with mean equal to  and sampling variance equal 

to  

ρ
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Using Equation 12, Equation 13 can be rewritten as: 
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 A confidence interval for  may be written as: ρ

ρσρρρσρ ˆˆˆˆˆˆ axya +− pp ,        (15) 
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where is a constant and depends on the alpha level specified by the investigator. In 

practice, the population validity is assumed to be zero if this confidence interval contains 

the zero point. It should be noted that this error variance formula for is only valid when 

the validity is the same across populations. Strictly speaking, one should first check to see 

if the hypothesis of equal population validities is valid, given the observed validities. 

Hedges and Olkin (1985) and Hunter and Schmidt (1990) offered statistical procedures 

(based on the chi-square statistic) for testing this null hypothesis.          

a

ρ̂

Random-Effects Model  

In view of Equation 7, the (asymptotic) mean and variance of an observed 

correlation may be written as:  

ρµ=)(
ii yx

rE ,          (16) 

222
iii eyr σσσ ρ += .         (17) 

A comparison of Equation 17 with Equation 9 shows an important distinction between 

the fixed-effects model and the random-effects model. The variance of population 

validities is included in the sampling variance of an observed correlation in the random-

effects model, but not in the fixed-effects model. Therefore, the fixed-effects sampling 

variance of an observed correlation is smaller than or equal to the sampling variance in 

the random-effects model. This distinction is not always well understood by practitioners 

and has received a great deal of attention lately (Erez at al., 1996; Hedges & Vevea, 

1998; Hunter & Schmidt, 2000; Overton, 1998).        

 Assuming that the sample validities are normally distributed, the ML estimates of 

the mean and variance of rhos ( and ) may be written as ρµ
2
ρσ
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∑

∑

=

== k

i
i

k

i
yxi

w

rw
ii

1

1
ρµ ,         (18) 

∑

∑

=

=

−−
= k

i
i

k

i
eyxi

w

rw
iii

1

2

1

222

2
])[( σµ

σ
ρ

ρ ,       (19) 

where 

22

1

ie
iw σσ ρ +
= .         (20)  

In view of Equation 4, an estimate of  ( ) can be written as:  iw iŵ

1
)1(

1ˆ
22

2

−

−
+

=

n
r

w
ii yx

i

ρσ

.        (21) 

These weights ( ) can then be used in solving Equations 18 and 19 simultaneously to 

obtain estimates for the mean and variance of population validities. It is not a difficult 

task, but numerical procedures are needed to successfully accomplish this estimation. 

Again, the sampling variance of within the ML framework may be expressed as: 

iŵ

ρµ̂

)ˆ(

1ˆ

1
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= k

i
iw
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σ .         (22) 

Appropriate confidence intervals for can be developed using an equation similar to 

the one given in Equation 15.    

ρµ
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Maximum Likelihood Estimation with Corrected Correlations  

Up to this point, we have only looked at the relationship between observed 

validities and their population parameters. In validity generalization research, it is a 

common practice to correct observed validities for unreliability in the criterion and/or 

predictor reliability and range restriction on the predictor. Standard psychometric and 

statistical procedures (Lord & Novick, 1968) are used in making these corrections. Two 

well known procedures for making such corrections to observed validity coefficients are 

as follows: (1) Correcting correlations using hypothetical distributions of predictor 

reliability, criterion reliability and range restriction (or corrections based on hypothetical 

artifact distributions) and (2) correcting correlations at the study level (that is, using 

sample-based reliability and range restriction values).   The currently available VG 

procedures for corrected correlations are based on one of these types of corrections. For 

ease of presentation, the psychometric model with corrections based on hypothetical 

artifact distributions will be hereafter referred to as VG with artifact distributions and the 

one based on study-level corrections as VG with direct corrections . Each of these models 

will be described below, along with procedures for obtaining the maximum likelihood 

estimates of the mean and variance of population validities (Raju & Drasgow, 2003). 

Since the random-effects model is considered by many to be a much more realistic model 

in practice, we will describe the ML estimation only for the random-effects model. 

Readers interested only in the fixed-effects model may ignore the estimation of the 

variance of population validities. For this group of researchers and practitioners, the 

estimation task will be rather straightforward and will not require any iterative 

algorithms.     
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VG with Artifact Distributions       

 Prior to defining this model, let represent the unrestricted population 

reliability of x, represent the unrestricted population reliability of y, and represent 

the attenuated population range restriction factor or simply the ratio of attenuated, 

restricted population standard deviation to the attenuated, unrestricted population 

standard deviation. This model may be expressed as:    

ii xx
ρ

ii yy
ρ iu

i

yyxxyxi

i
yyxxyxyx e

u

u
r

iiiiii

iiiiiiii
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−+
=

ρρρ
ρρρ

22 )1(1(
    (23) 

for study i. It should be noted that is the unattenuated, unrestricted population 

validity (or correlation between x and y) in population i. For ease of presentation, the 

above equation may be rewritten as:  

ii yx
ρ

iiiiyyxxyxyx eheuhr
iiiiiiii

+=+= ),,,( ρρρ ,      (24) 

where    

=≡ ),,,( iyyxxyxi uhh
iiiiii
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. (25) 

Using the ANOVA notation in Equation 7, Equation 24 may be rewritten as  

iihyx er
ii

++= τµ ,         (26) 

where is the grand mean and . In the fixed-effects model,  hµ hii h µτ −= 0=iτ

for all i. In the random-effects model, . In view of Equation 24, at an individual 

study level, the mean (or expectation) and variance of may be written, respectively, 

as: 

22
hσστ =

ii yx
r

hyx ii
rE µ=)( ,          (27) 
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222
iii ehyr σσσ += .         (28) 

As before, the maximum likelihood estimates of and can be obtained by solving 

the following two equations simultaneously. 
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As in the previous scenarios and in view of Equation 4, an estimate of  ( ) can be 

written as:  
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Equations 29-30 form the basis for iteratively solving for the maximum likelihood 

estimates of the mean and variance of h. Finally, the sampling variance of within the 

ML framework may be expressed as: 

hµ̂
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While solving Equations 29-30 will yield maximum likelihood estimates of and , 

these are not the parameters of interest in a VG analysis because they refer to the 

restricted, attenuated relationship. The parameters of interest are and .  Due to the 

invariance property of ML estimators, it is possible to obtain the ML estimators for 
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ρµ and  with the following equations (Raju & Drasgow, 2003). 2
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The terms A, B, C, and D are the partial derivatives of (Equation 25) with respective to 

, , , and u , respectively. The sampling variance of  can be obtained 

with  
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where  are as defined in Equation 31. Please refer to Raju and Drasgow (2003) for 

additional details.  

The statistical rationale used here for estimating the mean and variance of  is 

similar to the one used by Raju and Burke (1983) in developing their TSA procedures. It 

may be possible to use any one of the six currently available procedures (Callender & 

Osborn; 1980, Pearlman et al., 1980; Raju & Burke, 1983; Schmidt et al., 1980; Law et 

al., 1994) for this purpose. Among the six procedures, the TSA1 and TSA 2 procedures 

of Raju and Burke (1983) make direct use of the mean and variance of hypothetical range 

restriction values while the other four procedures use the mean and variance of a function 

of range restriction values. Given this relative simplicity associated with the TSA 

procedures, we have decided to use some of the same techniques used in one of the TSA 

procedures (TSA 1) to estimate the mean and variance of  from the maximum 

ρ

ρ
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likelihood estimates of the mean and variance of h . As the acronym implies, this 

procedure uses the Taylor series approximation (TSA) to estimate the mean and variance 

of a function of several variables. These are asymptotic estimates (Kendall & Stuart, 

1977); that is, as the sample size increases, these estimates converge to their population 

parameters. 

The reliabilities and range restriction values appearing in Equations 23-25 are 

commonly referred to as artifacts. Their means and variances in Equations 33-35 are 

assumed known at the population level. Furthermore, these reliabilities are for the 

unattenuated and unrestricted populations, whereas the range restriction values are for the 

attenuated (adjusted for unreliability) populations. The prevailing practice (Callender & 

Osborn; 1980, Pearlman et al., 1980; Raju & Burke, 1983; Schmidt et al., 1980; Law et 

al. 1994) is to use hypothetical distributions (means and variances) of artifacts in 

estimating the mean and variance of unattenuated and unrestricted population validities.  

Within the framework of VG with artifact distributions, the use of hypothetical 

artifact distributions gets around the frequently faced problem of not having access to 

sample-based reliability and range restriction values. In practice, one should be careful, 

however, in accepting the validity of hypothetical artifact distributions across all 

conditions. Hypothetical distributions of artifacts are probably justifiable in some 

situations, but may not be in others. Practitioners need to pay careful attention to the 

degree to which hypothetical distributions match the true distributions of artifacts.  

In addition to the assumption about the validity of artifact distributions, the 

currently available procedures for VG with artifact distributions assume that the 

hypothetical distributions are uncorrelated across populations. Several investigators have 
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commented on the meaning and tenability of this assumption. For this assumption to be 

true, according to James, Demaree, Mulaik, and Ladd (1992), the situational moderators 

that underlie situational specificity must be independent from the statistical artifacts. If 

the two are not independent, then the current procedures remove part of the actual 

variance attributable to the situational moderators when they subtract the “artifactual” 

variance. In two recent Monte Carlo studies, Raju et al. (1998) and Thomas and Raju 

(1998) have shown that if this assumption is violated, then the  estimates derived from 

the procedures based on bare-bones VG are not always accurate. In response to the 

problems associated with the use of hypothetical artifact distributions and the 

uncorrelatedness of these distributions, Raju, Burke, Normand, and Langlois (1991) 

proposed a different model (VG with direct corrections ), which assumes that the study-

level range restriction and reliability values are available. Then they go on to show that 

this model may still be useful when only partial (study-level) artifact data are available. 

Following Raju and Drasgow (2003), a description of this model is presented below 

along with its maximum likelihood estimates of the mean and variance of unrestricted 

and unattenuated population validities.  

2
ρσ

VG with Direct Corrections   

 As before, let r represent the observed correlation between x and y in a sample 

drawn from population i. Let r and represent the sample-based (restricted) 

reliabilities for x and y, respectively. Finally, let represent the unattenuated, but 

sample-based range restriction value. Then, using classical test theory (Lord & Novick, 

1968), a sample-based estimate of the unrestricted and unattenuated population validity 

( ) may be written as: 
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where  In view of this equation,  the model for VG with direct corrections 

(within the random-effects framework) may be expressed as: 
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As previously defined, is the grand mean and . In the fixed-effects 

model, for all i; in the random-effects model, . In view of Equation 37, at 

an individual study level, the mean (or expectation) and variance of  may be written, 

respectively, as: 
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According to Raju et al. (1991), an asymptotic variance of may be written as: ie
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222ˆ
iiiiiiii yxiyxyyxxi rgrrrV +−= .            (41) 

Given this model, the necessary maximum likelihood equations for  VG with direction 

corrections may be expressed as:  
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where an estimate of  ( ) can be written as:  iw iŵ
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Equations 42-43 will need to be solved iteratively for obtaining the maximum likelihood 

estimates of the mean and variance of . As in the previous models, the sampling 

variance of within the ML framework may be expressed as: 
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A Few Examples 

 We have briefly outlined the advantages of ML estimation methods over other 

estimation methods (for example, the method of moments) and then presented Raju and 

Drasgow’s (2003) procedures for estimating the mean and variance of population 

validities within this framework. ML-based VG estimates are presented for three different 

scenarios:  bare-bones (uncorrected correlations), artifact distributions  (correlations 

corrected with hypothetical artifact distributions), and direct corrections (correlations 

corrected with sample-based artifact data at the study level). All three models are 

expressed in terms of observed correlations without any transformations.  

Although it is aesthetically pleasing to derive new estimators for important VG 

parameters, it is also important to consider the “So what?” question.  Specifically, do the 
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ML estimators described herein for VG with artifact distributions and VG with direct 

corrections provide improved estimation of the mean and variance of population 

correlations?  One clear benefit is that we know the sampling distribution of ML 

estimates (i.e., they are asymptotically normal); consequently we can legitimately 

construct confidence intervals for VG parameters based on our sample estimates.   

There is a pressing need for assessing empirically the accuracy of the ML 

estimates for the three models studied here. In addition to accuracy, there is a need for 

assessing the relative accuracy of the ML estimates and the estimates from other 

methods, such as the method of moments. Large scale Monte Carlo studies are needed for 

a comprehensive assessment of the accuracy and utility of these estimations.  Such 

studies would reveal whether the ML estimates are more precise for the types of data 

typically analyzed by applied psychologists. 

 We are currently in the process of starting such an investigation. We have recently 

completed the development of a computer program in FORTRAN for determining the 

necessary ML estimates for the three models. The iterative computations involved in the 

ML estimation are carried out with the Broyden-Fletcher-Goldfarb-Shanno (BFGS) 

algorithm (Press, Flannery, Teukolsky, & Vetterling, 1986). The BFGS algorithm 

improves upon the well-known Davidon-Fletcher-Powell algorithm for solving non-linear 

simultaneous equations. We will use these programs to illustrate what the ML estimates 

are like and how they compare with the traditional (currently used) VG estimates. Two 

simple examples are used for this purpose. It should be noted that there is really nothing 

unique about these examples except that they are used here for illustrative purposes. 
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 Both VG examples consist of 10 validity studies. In Example 1 (Table 1), there 

are no sample-based artifact data, whereas, in Example 2 (Table 2), partial, sample-based 

range restriction, predictor reliability, and criterion reliability data are assumed known. In 

both examples, VG estimates for the three models are reported separately for the 

traditional and ML estimation methods. Each set of estimates consists of the mean of rhos 

( ) , variance of rhos ( ), and the fixed and random sampling variances ( ) of 

estimate of the mean of rhos.  The top half of each table shows the actual correlations 

used, and the bottom half shows the traditional and ML estimates.  

ρµ̂
2ˆρσ

2
ˆˆ
ρµ

σ

Example 1 

 In the first example (Table 1), the bare-bones mean estimates are .330 and .335 

for the traditional and ML estimates, respectively. The traditional mean estimates for the 

other two models (.730 and .649, respectively) are substantially higher. This is an 

expected result because the observed correlations are corrected for range restriction and 

unreliability in these models. In the model with artifact distributions, the artifact 

distributions previously recommended by Pearlman et al. (1980) were used. The mean 

values from the same artifact distributions were also used in the model with direct 

corrections; this is consistent with Raju et al.’s (1991) recommendation when sample-

based artifact information is completely unavailable. Compared to the traditional 

estimates, the ML estimates are slightly, but consistently higher; in the model with direct 

corrections, the ML estimate appears to be substantially higher than the traditional 

estimate (.735 vs. .649).  

 According to the data in Table 1, the variance estimates appear to be different 

across the three models and also across the two estimation methods. The traditional 
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variance estimates for the three models are .016, .037, and .027, respectively. Similarly, 

the ML variance estimates for the three models are .018, .042, and .018. The difference 

between the two estimation methods, both in terms of means and variances, is the largest 

for the VG model with direct corrections. The fixed and random sampling variances 

appear to be comparable across both methods of estimation, with the VG model with 

artifact distributions showing the biggest change (from .005 to .001). The ML estimates 

of the sampling variance appear to be about the same or slightly smaller than the 

traditional estimates.                   

Example 2 

 Data from the second example are shown in Table 2. The top half of this table 

shows not only the observed correlations but also the sample-based range restriction and 

predictor and criterion reliability values. It should be noted that only partial information 

is assumed known for the latter three indices. It should also be noted that these partial 

data were used in the VG model with direct corrections. In general, as shown at the 

bottom of Table 2, the ML estimates of the mean and variance of rhos appear to be 

slightly larger than the traditional estimates. With respect to the fixed and random 

sampling variances, both methods of estimation appear to give similar results across the 

three models. Finally, the mean estimates are higher for the VG model with artifact 

distributions than for the VG model with direct corrections; the opposite appears to be 

true for the variance estimates. Some or all of this variability may be due to the fact that 

the means and variances of the sample-based artifact distributions are different from the 

means and variances of Pearlman et al.’s distributions of artifacts.  
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 In summary, the data in Tables 1 and 2 are just two illustrations of what the 

estimates from the traditional and ML methods may look like. The traditional and ML 

estimates appear to be different at times, which may be unique for these two data sets 

used. These are some of the examples we used in debugging the ML estimation program. 

After some more checks with the program, we will be ready for a Monte Carlo study to 

asses the comparability and accuracy of the traditional and ML estimation methods. 

Other than the known, desirable statistical properties (asymptotic consistency and 

efficiency) associated with ML estimations, nothing can be said at this time about the 

degree of the accuracy of the ML estimates. We need a comprehensive Monte Carlo 

investigation to answer that question.                    
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Table 1 

Example 1: A data set of 10 correlations with no sample-based artifact data 
 

    Study    Sample  
      Size 

Correlation 

        1        75      .140 
        2        75      .250 
        3         75      .400 
        4       100      .300 
        5      100      .510 
        6      100      .270 
        7      100      .620 
        8        80      .300 
        9        80      .350 
       10        80      .050 
   
   Mean     86.5      .330 
   Variance       .025 
 
 
Results from the three models 
 
 
Model 

                        Traditional             
                         Estimates 
 
Mean      Variance        Fixed        Random 

( )         ( )         ( )         ( ) ρµ̂
2ˆρσ

2
ˆˆ
ρµ

σ 2
ˆˆ
ρµ

σ

                              ML           
                          Estimates 
 
Mean     Variance      Fixed        Random 

( )        ( )       ( )         ( ) ρµ̂
2ˆρσ

2
ˆˆ
ρµ

σ 2
ˆˆ
ρµ

σ

 
Bare-Bones 
 

 
.330           .016              .001            .003  

 
.335           .018           .001            .003      

 
With Artifact 
Distributions 
 

 
 
.730           .037               .001           .005  

 
 
.739           .042         .000              .001 

 
With Direct 
Corrections 
 

 
 
.649          .027                .003           .005 

 
 
.735           .018         .001              .004 
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Table 2 
 

Example 2: A data set of 10 correlations with partial sample-based artifact data 
 

    Study    Sample  
      Size 
      (N) 

Correlation 
 
        (r) 

    Range 
Restriction      
       (u) 

Predictor  
Reliability 
    ( ) xxr

Criterion 
Reliability 
   ( ) yyr

        1        60      .140       .850       .600 
        2        75      .250      .800       .700 
        3         85      .450      .880      .830  
        4       110      .320             .820 
        5        50      .410       .790  
        6        90      .600      .900   
        7      100      .620    
        8        65      .350    1.000      .900      .590 
        9        80      .350      .500      .850      .650 
       10        65      .190      .900      .760      .640 
      
   Mean     78.0      .338     .825     .832      .689 
   Variance       .016     .025     .002      .006 
 
 
Results from the three models 
 
 
Model 

                        Traditional             
                         Estimates 
 
Mean      Variance        Fixed        Random 

( )         ( )         ( )         ( ) ρµ̂
2ˆρσ

2
ˆˆ
ρµ

σ 2
ˆˆ
ρµ

σ

                            ML           
                       Estimates 
 
Mean     Variance      Fixed        Random 

( )        ( )       ( )         ( ) ρµ̂
2ˆρσ

2
ˆˆ
ρµ

σ 2
ˆˆ
ρµ

σ

 
Bare-Bones 
 

 
.338           .006              .001            .002  

 
.350           .010           .001            .002      

 
With Artifact 
Distributions 
 

 
 
.746           .002               .001           .001  

 
 
.767           .011         .000              .001 

 
With Direct 
Corrections 
 

 
 
.526          .014                .002           .003 

 
 
.561           .017         .002              .004 

 
 
 
 


