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The Conditional Random-Effects Variance Component in Meta-regression


Most meta-analysts attempt to understand the sources of variance in their effect sizes, typically by partitioning the observed variance into pieces related to (a) sampling error (and perhaps other statistical artifacts), (b) moderators, and (c) a residual that represents ‘true’ variation in effect sizes that cannot be explained by artifacts and available moderators.  After subtracting sampling and moderator variance from the observed effect sizes, what remains is a residual variance that we call the conditional random-effects variance component (CREVC; Hedges & Pigott, 2004, describe the importance of the CREVC).  The unconditional random-effects variance component is what Hunter and Schmidt (2004) would call the square of SDrho (
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; variance of effect sizes less artifacts but not moderators).  This paper’s concern is conditional or residual because it is the REVC when holding the available moderator(s) constant.
Suppose that the unconditional REVC is greater than zero.  Then moderators are at work and it makes sense to discover what they are.  If our available moderators explain all the variance in effect sizes (beyond sampling error), then the CREVC will be zero, and we have a fixed-effects analysis.  If the moderators do not explain all the variance in effect sizes (beyond sampling error), then the CREVC is greater than zero, and some additional moderators remain to be discovered.   The preferred technique for data analysis with continuous moderators in the case of a positive CREVC is called a random-effects or mixed-effects regression (Lipsey & Wilson, 2001). 


The CREVC is important because its value determines whether the fixed-effects or the random-effects regression is the appropriate analysis.  If we use the inappropriate analysis, our regression estimates and inferences are more likely to be faulty.  The CREVC is also important because it indicates whether to continue to search for moderators.  The smaller the CREVC, the better our understanding of the phenomenon, and the less we need to worry about additional sources of variation in the effect sizes.


Purpose.  In this study, we examined (a) regression methods that produce point estimates of the CREVC, (b) methods for testing whether the CREVC is zero in the population, and (c) methods for placing a confidence interval around the CREVC.  Monte Carlo techniques were used to evaluate bias and root-mean-square error of the point estimators, Type I and Type II errors for significance tests, and width and coverage probability for confidence intervals.


Techniques.  The two methods of random-effects regression that we considered were the method of moments estimator (random-effects weighted regression), and the maximum likelihood estimator (iterated random-effects weighted regression).  For testing the null that CREVC = 0 in the population, we used a chi-square test based on fixed-effects weighted regression (Raudenbush, 1994), two chi-square tests based on random-effects weight regression (currently used in available software), and three different confidence intervals to see whether the intervals contained zero.  The confidence intervals were based on bootstrap methods or point estimates and the associated standard errors from the maximum likelihood estimates of the CREVC.
Method

Design
Four factors were manipulated: unconditional random-effects variance, proportion of variance accounted for by study-level covariates, number of studies, and average study sample size. The random-effects variance consisted of six levels (0, .04, .10, .19, .35, .52.); the proportion of variance accounted for by covariates had four levels (0, .02, .18, .50); the number of studies had six levels (13, 22, 30, 69, 112, 234); and average study sample size had three levels (53, 231, 730). The factors were fully crossed with the exception of the zero random-effects variance level, which was not crossed with the non-zero proportion of variance accounted for by covariates levels because zero random-effects variance implies that there are no moderators at the population level. Therefore, a total of 360 (5*4*6*3) conditions were fully crossed and another 18 conditions (1*1*6*3) were not, yielding a total of 378 conditions. For each of these conditions, 10,000 replications were computed. For each replication, we evaluated the bias and root-mean-square error of the method of moments and maximum likelihood estimators, as well as coverage and width of maximum likelihood and bootstrap intervals. For significance tests of the null hypothesis of zero CREV, the null random-effects conditions were examined for Type I errors and the non-null conditions for statistical power.  

Data Generation

A Monte Carlo program was written in SAS® PROC IML in order to generate and analyze data according to design parameters described previously.  Meta-analysis can be viewed as a survey with a two-stage cluster design in which one first randomly samples from a population of studies, then for each study a random sample of participants is obtained (Raudenbush, 1994). The approach to data generation mirrored this conceptualization. In the first stage, the population of studies was created through a regression model. First, k studies were drawn from each of three standard normal random variables, in order to correspond to the response and predictor variables. Second, a correlation structure among these variables was selected based on the association among the variables dictated by the simulation design. Next, the matrix consisting of k observations on the three standard normal random variables was multiplied by a Cholesky decomposed correlation matrix relating the response and predictor variables. We further manipulated the k observations on the response by multiplying it by the square root of the random-effects variance (i.e., the standard deviation of the unconditional distribution of effect sizes) and adding a constant to correspond to the desired unconditional mean for the response. The results of these manipulations were k observations on response and predictor variables drawn from normally distributed populations with associations specified by the simulation design, as well as a response variable that was appropriately scaled.

 The data generation methods described to this point yield only population level data, that is, data in the absence of sampling error. To generate data with sampling error a second stage of sampling was developed by treating the previously created population level effect size data for each study as values to be sampled. Therefore, n observations were randomly drawn from a standard normal distribution and a normal distribution with a mean of the population effect size and a variance of one. Sample means and variances were calculated for each of these groups and a standardized mean difference statistic (d) was calculated with a bias correction (Hedges & Olkin, 1985).   

Regression Parameters. The effect size metric for simulating data was the standardized mean difference (d). Therefore, it was necessary to select plausible values for the unconditional mean of the response, and in turn the intercept of the regression model, using this metric. In one survey of three industrial/organizational psychology journals (Academy of Management Journal, Journal of Applied Psychology, and Personnel Psychology) from 1979 to 2005, 48 meta-analyses were located, an average d was calculated for each, and the median across these 48 meta-analyses was .44 (Brannick, Yang, & Cafri, 2008). In another survey of 113 meta-analyses published in Psychological Bulletin between 1995 and 2005, the median of all average ds reported was similar, .50 (Cafri, Kromrey, & Brannick, 2008). We choose .50 as a value of the intercept of the regression model. There was less of an empirical basis to select values for the relationship among the predictors and between the predictors and the response. To simplify the design, uncorrelated predictors were chosen and the relationship between each of the two predictors and response was selected to be the same, 0, .10, .30, or .50. This yielded a design in which the proportion of (unconditional) random-effects variance accounted for by the predictors at the population study level was 0, .02, .18, or .50 (i.e.,
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Unconditional and Conditional Random-Effects Variance.  The conditional random-effects variance (CREVC) was manipulated by crossing levels of the unconditional random-effects variance with the
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 levels described above. Specifically, the CREVC parameter was determined by:
[image: image4.wmf]2

2

*

)

1

(

t

R

-

. The unconditional random-effects variance levels selected corresponded to values calculated from the Brannick et al. (2008) survey.  From that survey, the chosen distribution of unconditional random-effects variance estimates (using the estimator of Dersimonian & Laird, 1986) was 0 for the smallest value and at the 10th percentile, .04 at the 25th percentile, .10 at the 50th percentile, .19 at the 75th percentile, .35 at the 90th percentile, and .52 for  the largest value. 
Number of Studies and Average Study Sample Size. The values for levels of these factors were based on the Cafri et al. (2008) survey.  From that survey, a distribution of number of studies per meta-analysis that used regression models ranged from 13 for the smallest value, 22 at the 10th percentile, 30 at the 25th percentile, 69 at the 50th percentile, 112 at the 75th percentile, 234 at the 90th percentile, and 503 as the largest value (503 was not incorporated into the design of the simulation). For the average study sample size three values were selected that corresponded to the 10th, 50th, and 90th percentile values of the surveyed meta-analyses, they were 53, 231, and 730, respectively. Sample sizes for individual studies were drawn from a distribution having as its mean one of these three sample size values. Samples sizes were drawn from distributions that were both positively skewed (2.2) and kurtotic (5.3), which was the median for the surveyed meta-analyses in the Brannick et al. (2008) study.  Fleishman’s (1978) power transformation were used to obtain non-normal distributions using an existing SAS program (Fan, Felsovalyi, Sivo, & Keenan, 2002). Once a sample size for a particular study was selected, the total was divided in half, so that each group had an equal number of observations. 

Outcome Measures
Bias was calculated as the average difference between the estimate and the parameter. Relative bias was calculated as bias divided by the parameter. Note that the results for relative bias do not include the zero CREVC parameter conditions because this would require division by zero. The root-mean-square error was determined by taking the square root of the average squared distance of the estimate from the parameter. Probability content or coverage of the intervals was calculated as the proportion of times the interval captured the parameter. Interval width was evaluated by the average length of the interval. Type I error rate was calculated as the proportion of times the null hypothesis was rejected when the null hypothesis of zero conditional random-effects variance was the simulated parameter, whereas Power was the proportion of times the null hypothesis was rejected when the parameter was a non-zero conditional random-effects variance.

Results

We present the results for the point estimates, confidence intervals, and significance tests in turn.

Point Estimates


Bias.  The results are shown in a series of graphs in Figure 1, which displays the results for the method of moments estimator (MME) in the left column, and the results for maximum likelihood estimate (MLE) in the right column.  Each boxplot shows the results across all cells of the design at the level of the design displayed on the horizontal axis.  For example, in the top left graph, the first boxplot shows the average bias at 13 studies across all levels of sample size and all levels of the CREVC.  The boxplots do not show distributions of the estimates within cells (i.e., the boxplot is a distribution of average bias across cells, not a distribution of bias within cells).  

Figure 1 shows that generally the estimators underestimate the parameter. However, the magnitude of this negative bias is more substantial for the MLE than for MME under the conditions examined. Figures 1 and 2 show that the MLE showed increased bias with decreasing number of studies, which was not true of MME. The MME is less biased than the MLE when the number of studies is 13, 22, and 30; at 69 studies the amount of bias is approximately equal for the two estimators, and with 112 and 234 the MLE has less bias than the MME. In terms of study sample size, both the MME and MLE improved with increasing size, but the MME was noticeably less biased across the sample size conditions (particularly with respect to relative bias, see Figure 2). Figure 1 appears to show that both estimators have increasing negative bias as the size of the CREVC increases, with less bias for the MME. Figure 2 illustrates that contrary to Figure 1, the MLE actually slightly improves in relative bias as the CREVC increases. More importantly, Figure 2 is consistent with Figure 1 in so far as it shows substantially less bias for MME across CREVC values. 


Root-Mean-Square Error (RMSE).  Because the estimators are biased, both bias and variance of the estimators contribute to the magnitude of the RMSE.  The results are displayed in Figure 3. The pattern and magnitude of the RMSE is virtually identical for both estimators. The RMSE improves with an increasing number of studies, increasing sample size (average n = 53 vs. 231 and 730), and decreasing CREVC. What is particularly noteworthy about Figure 3 is the rather large difference between the estimate and the parameter in the conditions examined in this study. Specifically, the RMSE can be as high as .25 in some conditions, while the average across all conditions for both estimators is.05. These results for RMSE do not illustrate how variable individual estimates will be about their parameter, only how variable the estimates are on average in a particular condition. Generally, the individual estimates will be much more variable than the condition averages. For instance, Figure 4 shows the distribution of the individual estimates for method of moments and maximum likelihood estimates for the condition in which K = 30, average n = 231, R2 = .02, REVC = .19, CREVC=.1862. The average RMSE for both estimators n this condition is .05, but individual estimates can deviate from the parameter by as much as .25. These results suggest the importance of using interval estimators, to which we turn our attention next.  

Confidence Intervals


We computed 95 percent confidence intervals using three methods, maximum likelihood (ML), bootstrap (BS), and bias-corrected bootstrap (BC).  Optimal characteristics of confidence intervals include capturing the parameter at the nominal rate (95 percent of the time under the design of the current study) and narrow intervals.

Coverage.  Distributions of coverage for each of the three estimators over all conditions in the study are shown in Figure 5.  Boxplots are not shown as a function of the study design variables because the graphs are messy and difficult to grasp.  The boxplots show that coverage was on average less than the desired 95 percent for the confidence intervals. 

In general, coverage tended to be poorest when the number of studies was small, the average sample size was small, and the CREVC was large.  For example, when the number of studies was 13, the average sample size was 53, and the CREVC was .52, the proportion of times that the parameter was captured by the interval for the ML, bootstrap, and bias corrected bootstrap confidence intervals were .67, .69, and .79, respectively. As the number of studies and average sample size increased, so did the coverage, approaching .95 when the average number of people was 730 with 234 studies, provided that the CREVC was not too small.  With very small CREVC, the ML and bootstrap coverage exceeded .95, often reaching 1.0.  The bias corrected bootstrap estimator never reached coverage of 1.0, and was generally closer to the desired 95 percent, even when the CREVC was very small. Recall that estimates greater than 95 percent are undesirable because in such a case the confidence interval is wider than it should be. Of the three approaches, the bias corrected bootstrap estimator usually showed better coverage, with over three quarters greater than 85 percent, and only a few instances of coverage greater than 95 percent.  


Width.  Results are shown in boxplots in Figures 6 and 7 for two of the three main factors in the simulation (average sample size per study had very little effect on the width of the confidence intervals and is not shown).  As can be seen in Figure 6, larger numbers of studies resulted in smaller intervals, and larger values of the CREVC resulted in larger intervals. Comparing the estimators to one another, the bias corrected bootstrap estimator tended to have the widest intervals. However, the magnitude of the increase in width of bias corrected bootstrap relative to other two estimators was rather small. 

Hypothesis Tests

Table 1 shows the percentage of results significant at the .05 level for several different tests as a function of the size of the underlying CREVC.  Thus, the first row (CREV = 0) shows the Type I error rate, and subsequent rows (CREVC > 0) show power.  As can be seen in Table 1, the standard QE test, the chi-square test based on fixed-effect weights, showed both a Type I error rate near .05, and uniformly better power than the other tests. It should be mentioned, however, that the performance of the bias-corrected bootstrap performed almost as well as the QE test with fixed-effects weights. Moreover, both QE tests with random-effects weights that are often reported in software output performed poorly, with a Type I error rate at zero (which is well below the nominal value of .05), and power at zero or close to it for all values of the CREVC. Given that the QE test with fixed-effects weights outperformed other significance tests, its power was examined as a function of the CREVC and number of studies (Figure 8). Figure 8 suggests that power exceeds .80 when the CREVC is larger than about .05 and the number of studies is about 20.  

Discussion


Monte Carlo methods were used to evaluate methods for providing point estimates of the CREVC, testing the significance of the CREVC, and providing confidence intervals for the CREVC.  

Concerning point estimates, the method of moments estimator was less biased than the maximum likelihood estimator until the number of studies became large (greater than 100 studies).  The RMSE was equivalent for both point estimators.  In terms of the significance tests, the method suggested by Raudenbush (1994) worked best, providing the most power of all methods tested while nearly matching the desired percentage of Type I errors.  The bias-corrected bootstrap estimates of the confidence interval produced the best coverage (did the best job of containing the parameter), though at the price of slightly wider confidence intervals than the other methods.  


Implications.  We recommend that authors test for the significance of the CREVC using the Raudenbush (1994) fixed-effects regression chi-square.  The chi-square tests of the significance of the residual provided by popular software for random-effects regression are not recommended as they have essentially no power to detect heterogeneity even when the CREVC is quite large.  Most meta-analyses in I/O have fewer than 100 studies for moderator analyses.  In such cases, we recommend that the method of moments estimators be used to generate a point estimate of the CREVC (although the maximum likelihood point estimate is about as good) and the bias-corrected bootstrap confidence intervals be used to communicate the uncertainty about the magnitude of the estimate.  We encourage authors to calculate and report confidence intervals or other quantitative indices of the uncertainty of all their meta-analytic estimates.  We have written a SAS IML program that calculates both the method of moments and maximum likelihood regression estimates along with the associated confidence intervals and the test of the null hypothesis for the CREVC.  The program is free and may be downloaded at http://luna.cas.usf.edu/~mbrannic/files/meta/MetaRegsMB1.sas .
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Table 1. Type I Errors and Power of Significance Tests of the Conditional Random-Effects Variance

	
	Chi-Square Tests
	Confidence Intervals

	CREVC
	MM-Ran
	ML-Ran
	MM-Fix
	ML
	BS
	BC

	0.000
	0.0
	0.0
	0.045
	0.002
	0.004
	0.044

	0.020
	0.0
	0.0
	0.732
	0.507
	0.537
	0.710

	0.033
	0.0
	0.0
	0.829
	0.627
	0.652
	0.812

	0.039
	0.0
	0.0
	0.857
	0.670
	0.691
	0.842

	0.040
	0.0
	0.0
	0.859
	0.674
	0.696
	0.845

	0.050
	0.0
	0.0
	0.892
	0.722
	0.741
	0.879

	0.082
	0.0
	0.0
	0.945
	0.808
	0.822
	0.936

	0.095
	0.0
	0.0
	0.955
	0.828
	0.840
	0.947

	0.098
	0.0
	0.0
	0.959
	0.834
	0.846
	0.951

	0.100
	0.0
	0.0
	0.960
	0.837
	0.849
	0.952

	0.156
	0.0
	0.0
	0.983
	0.892
	0.900
	0.977

	0.175
	0.0
	0.0
	0.987
	0.903
	0.910
	0.982

	0.186
	0.0
	0.0
	0.989
	0.912
	0.918
	0.984

	0.190
	0.0
	0.0
	0.989
	0.913
	0.920
	0.985

	0.260
	0.0
	0.0
	0.995
	0.938
	0.942
	0.992

	0.287
	0.0
	0.0
	0.996
	0.947
	0.950
	0.994

	0.343
	0.0
	0.0
	0.998
	0.958
	0.960
	0.996

	0.350
	0.0
	0.0
	0.998
	0.959
	0.960
	0.996

	0.426
	0.0
	0.0
	0.998
	0.969
	0.970
	0.997

	0.510
	0.003
	0.0
	0.999
	0.978
	0.976
	0.998

	0.520
	0.004
	0.0
	0.999
	0.978
	0.977
	0.999


Note.  CREVC = conditional random-effects variance component, MM-Ran = test of the residual variance from random-effects weighted regression using the method of moments estimator, ML-Ran = test of the residual variance from random-effects weighted regression using the maximum likelihood estimator, MM-Fix = test of the residual variance from fixed-effects weighted regression using the method of moments estimator, ML= test of whether the lower bound of the ML confidence interval contains zero, BS = test of whether the lower bound of the bootstrap confidence interval contains zero, BC = test of whether the lower bound of the bias corrected bootstrap confidence interval contains zero.

Figure Captions

Figure 1. Bias for Method of Moments (MME) and Maximum Likelihood (MME) Estimators 

Figure 2. Relative Bias for Method of Moments (MME) and Maximum Likelihood (MLE) Estimators 

Figure 3. Root-Mean-Square Error for Method of Moments (MME) and Maximum Likelihood (MLE) Estimators

Figure 4. Distribution of Estimates for Method of Moments (MM) and Maximum Likelihood (ML) Estimators for a Single Study Condition   

Figure 5.  Coverage of Interval Estimates for Maximum Likelihood, Bootstrap, and Bias-Corrected Bootstrap Estimators

Figure 6.  Interval Width of Confidence Intervals for Maximum Likelihood, Bootstrap, and Bias Corrected Bootstrap Estimators as a Function of the Number of Studies

Figure 7.  Interval Width of Confidence Intervals for Maximum Likelihood, Bootstrap, and Bias Corrected Bootstrap Estimators as a Function of the Conditional Random-Effects Variance 

Figure 8.  Power of the Test of Residual Variance with Fixed-Effects Weights as a Function of the Conditional Random-Effects Variance and Number of Studies (K)

Figure 1
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Figure 2
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Figure 3
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Figure 4.
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Figure 5.
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Figure 6
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Figure 7.
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