Davis Exercise 1

The Davis dataset appears to be a portion of data reported by: Davis, C. & Cowles, M. (1991). Body image and exercise: A study of relationships and comparisons between physically active men and women. Sex Roles, 25, 33-44.

library(car)                 # calling the library lets you use the data and functions in it
library(psych)               # for descriptive stats
## 
## Attaching package: 'psych'
## The following object is masked from 'package:car':
## 
##     logit
Davis                        # prints the dataset from the package 'car'
##     sex weight height repwt repht
## 1     M     77    182    77   180
## 2     F     58    161    51   159
## 3     F     53    161    54   158
## 4     M     68    177    70   175
## 5     F     59    157    59   155
## 6     M     76    170    76   165
## 7     M     76    167    77   165
## 8     M     69    186    73   180
## 9     M     71    178    71   175
## 10    M     65    171    64   170
## 11    M     70    175    75   174
## 12    F    166     57    56   163
## 13    F     51    161    52   158
## 14    F     64    168    64   165
## 15    F     52    163    57   160
## 16    F     65    166    66   165
## 17    M     92    187   101   185
## 18    F     62    168    62   165
## 19    M     76    197    75   200
## 20    F     61    175    61   171
## 21    M    119    180   124   178
## 22    F     61    170    61   170
## 23    M     65    175    66   173
## 24    M     66    173    70   170
## 25    F     54    171    59   168
## 26    F     50    166    50   165
## 27    F     63    169    61   168
## 28    F     58    166    60   160
## 29    F     39    157    41   153
## 30    M    101    183   100   180
## 31    F     71    166    71   165
## 32    M     75    178    73   175
## 33    M     79    173    76   173
## 34    F     52    164    52   161
## 35    F     68    169    63   170
## 36    M     64    176    65   175
## 37    F     56    166    54   165
## 38    M     69    174    69   171
## 39    M     88    178    86   175
## 40    M     65    187    67   188
## 41    F     54    164    53   160
## 42    M     80    178    80   178
## 43    F     63    163    59   159
## 44    M     78    183    80   180
## 45    M     85    179    82   175
## 46    F     54    160    55   158
## 47    M     73    180    NA    NA
## 48    F     49    161    NA    NA
## 49    F     54    174    56   173
## 50    F     75    162    75   158
## 51    M     82    182    85   183
## 52    F     56    165    57   163
## 53    M     74    169    73   170
## 54    M    102    185   107   185
## 55    M     64    177    NA    NA
## 56    M     65    176    64   172
## 57    F     66    170    65    NA
## 58    M     73    183    74   180
## 59    M     75    172    70   169
## 60    M     57    173    58   170
## 61    M     68    165    69   165
## 62    M     71    177    71   170
## 63    M     71    180    76   175
## 64    F     78    173    75   169
## 65    M     97    189    98   185
## 66    F     60    162    59   160
## 67    F     64    165    63   163
## 68    F     64    164    62   161
## 69    F     52    158    51   155
## 70    M     80    178    76   175
## 71    F     62    175    61   171
## 72    M     66    173    66   175
## 73    F     55    165    54   163
## 74    F     56    163    57   159
## 75    F     50    166    50   161
## 76    F     50    171    NA    NA
## 77    F     50    160    55   150
## 78    F     63    160    64   158
## 79    M     69    182    70   180
## 80    M     69    183    70   183
## 81    F     61    165    60   163
## 82    M     55    168    56   170
## 83    F     53    169    52   175
## 84    F     60    167    55   163
## 85    F     56    170    56   170
## 86    M     59    182    61   183
## 87    M     62    178    66   175
## 88    F     53    165    53   165
## 89    F     57    163    59   160
## 90    F     57    162    56   160
## 91    M     70    173    68   170
## 92    F     56    161    56   161
## 93    M     84    184    86   183
## 94    M     69    180    71   180
## 95    M     88    189    87   185
## 96    F     56    165    57   160
## 97    M    103    185   101   182
## 98    F     50    169    50   165
## 99    F     52    159    52   153
## 100   F     55    155    NA   154
## 101   F     55    164    55   163
## 102   M     63    178    63   175
## 103   F     47    163    47   160
## 104   F     45    163    45   160
## 105   F     62    175    63   173
## 106   F     53    164    51   160
## 107   F     52    152    51   150
## 108   F     57    167    55   164
## 109   F     64    166    64   165
## 110   F     59    166    55   163
## 111   M     84    183    90   183
## 112   M     79    179    79   171
## 113   F     55    174    57   171
## 114   M     67    179    67   179
## 115   F     76    167    77   165
## 116   F     62    168    62   163
## 117   M     83    184    83   181
## 118   M     96    184    94   183
## 119   M     75    169    76   165
## 120   M     65    178    66   178
## 121   M     78    178    77   175
## 122   M     69    167    73   165
## 123   F     68    178    68   175
## 124   F     55    165    55   163
## 125   M     67    179    NA    NA
## 126   F     52    169    56    NA
## 127   F     47    153    NA   154
## 128   F     45    157    45   153
## 129   F     68    171    68   169
## 130   F     44    157    44   155
## 131   F     62    166    61   163
## 132   M     87    185    89   185
## 133   F     56    160    53   158
## 134   F     50    148    47   148
## 135   M     83    177    84   175
## 136   F     53    162    53   160
## 137   F     64    172    62   168
## 138   F     62    167    NA    NA
## 139   M     90    188    91   185
## 140   M     85    191    83   188
## 141   M     66    175    68   175
## 142   F     52    163    53   160
## 143   F     53    165    55   163
## 144   F     54    176    55   176
## 145   F     64    171    66   171
## 146   F     55    160    55   155
## 147   F     55    165    55   165
## 148   F     59    157    55   158
## 149   F     70    173    67   170
## 150   M     88    184    86   183
## 151   F     57    168    58   165
## 152   F     47    162    47   160
## 153   F     47    150    45   152
## 154   F     55    162    NA    NA
## 155   F     48    163    44   160
## 156   M     54    169    58   165
## 157   M     69    172    68   174
## 158   F     59    170    NA    NA
## 159   F     58    169    NA    NA
## 160   F     57    167    56   165
## 161   F     51    163    50   160
## 162   F     54    161    54   160
## 163   F     53    162    52   158
## 164   F     59    172    58   171
## 165   M     56    163    58   161
## 166   F     59    159    59   155
## 167   F     63    170    62   168
## 168   F     66    166    66   165
## 169   M     96    191    95   188
## 170   F     53    158    50   155
## 171   M     76    169    75   165
## 172   F     54    163    NA    NA
## 173   M     61    170    61   170
## 174   M     82    176    NA    NA
## 175   M     62    168    64   168
## 176   M     71    178    68   178
## 177   F     60    174    NA    NA
## 178   M     66    170    67   165
## 179   M     81    178    82   175
## 180   M     68    174    68   173
## 181   M     80    176    78   175
## 182   F     43    154    NA    NA
## 183   M     82    181    NA    NA
## 184   F     63    165    59   160
## 185   M     70    173    70   173
## 186   F     56    162    56   160
## 187   F     60    172    55   168
## 188   F     58    169    54   166
## 189   M     76    183    75   180
## 190   F     50    158    49   155
## 191   M     88    185    93   188
## 192   M     89    173    86   173
## 193   F     59    164    59   165
## 194   F     51    156    51   158
## 195   F     62    164    61   161
## 196   M     74    175    71   175
## 197   M     83    180    80   180
## 198   M     81    175    NA    NA
## 199   M     90    181    91   178
## 200   M     79    177    81   178
str(Davis)                   # tells the data structure
## 'data.frame':    200 obs. of  5 variables:
##  $ sex   : Factor w/ 2 levels "F","M": 2 1 1 2 1 2 2 2 2 2 ...
##  $ weight: int  77 58 53 68 59 76 76 69 71 65 ...
##  $ height: int  182 161 161 177 157 170 167 186 178 171 ...
##  $ repwt : int  77 51 54 70 59 76 77 73 71 64 ...
##  $ repht : int  180 159 158 175 155 165 165 180 175 170 ...

Exercise Questions:

  1. How many men and how many women in the sample?

  2. Combining men and women, what are the means and standard deviations for weight, height, reptwt, repht (measured vs self-reported height and weight)?

  3. In these data, weight is in kg (kilograms), height is in cm (centimeters). What is the mean body mass index for the total sample? Note: BMI is computed by kg/meters-squared (divide cm by 100 to yield meters, then square) A BMI below 18.5 is considered underweight. A BMI of 18.5 to 24.9 is considered healthy. A BMI of 25 to 29.9 is considered overweight. A BMI of 30 or higher is considered obese.

  4. Do you spot a problem in the data? What do you think caused it? Fix it.

  5. What is the probability that someone randomly drawn from this sample would be underweight?

  6. What is the probability that someone randomly drawn from a normally distributed population that has this sample’s mean and standard deviation would be underweight?

  7. Discussion question (ask your partner, then we will discuss as a class): How could you decide whether men or women were more accurate in reporting their height? Weight? (Numbers and graphs rather than statistical tests at this point. How would you examine the data and show to people to convince them?)