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Digital Holography Applications in Ophthalmology, 

Biometry, and Optical Trapping Characterization 

 
Mariana Camelia Potcoava 

ABSTRACT 

 

This dissertation combines various holographic techniques with application on the 

two- and three-dimensional imaging of ophthalmic tissue, fingerprints, and microsphere 

samples with micrometer resolution. 

Digital interference holography (DIH) uses scanned wavelengths to synthesize 

short-coherence interference tomographic images. We used DIH for in vitro imaging of 

human optic nerve head and retina. Tomographic images were produced by superposition 

of holograms. Holograms were obtained with a signal-to-noise ratio of approximately 50 

dB. Optic nerve head characteristics (shape, diameter, cup depth, and cup width) were 

quantified with a few micron resolution (4.06 -4.8 mμ ). Multiple layers were 

distinguishable in cross-sectional images of the macula. To our knowledge, this is the 

first report of DIH use to image human macular and optic nerve tissue.  

Holographic phase microscopy is used to produce images of thin film patterns left 

by latent fingerprints. Two or more holographic phase images with different wavelengths 
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x

are combined for optical phase unwrapping of images of patent prints. We demonstrated 

digital interference holography images of a plastic print, and latent prints. These 

demonstrations point to significant contributions to biometry by using digital interference 

holography to identify and quantify Level 1 (pattern), Level 2 (minutia points), and Level 

3 (pores and ridge contours). 

Quantitative studies of physical and biological processes and precise non-contact 

manipulation of nanometer/micrometer trapped objects can be effectuated with 

nanometer accuracy due to the development of optical tweezers. A three-dimensional 

gradient trap is produced at the focus position of a high NA microscope objective. 

Particles are trapped axially and laterally due to the gradient force. The particle is 

confined in a potential well and the trap acts as a harmonic spring. The elastic constant or 

the stiffness along any axis is determined from the particle displacements in time along 

each specific axis. Thus, we report the sensing of small particles using optical trapping in 

combination with the digital Gabor holography to calibrate the optical force and the 

position and of the copolymer microsphere in the x, y, z direction with nm precision. 
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CHAPTER 1 
 

GENERAL INTRODUCTION 

 

This chapter presents a brief history of holography and an overview of existent imaging 

techniques for biomedical optics, biometry, and optical trapping. A brief review of 

holography and three-dimensional imaging is presented in Section 1.1. Ophthalmic 

imaging devices overview and the structure of the retina are given in Section 1.2. In 

Section 1.3 fingerprint characteristics and biometry imaging techniques designated for 

fingerprint imaging are presented. Optical trapping imaging and the relation to 

holography are described in Section 1.4. The motivation for this research and a summary 

of the original contributions in this dissertation are presented in Section 1.5. Finally, 

Section 1.6 outlines the organisation of this thesis. 

 

1.1 Holography and Three-Dimensional Imaging  

The principle of holography was introduced by Denis Gabor [1] in 1948, as a 

technique where wavefronts from an object were recorded and reconstructed in such a 

way that not only the amplitude but also the phase of the wave field were recovered. 

Gabor called this interference pattern a „hologram”, from the Greek word “holos’‘-the 

whole, because it contained the whole information, the entire three-dimensional wave 

field as amplitude and phase. In 1967, J. Goodman demonstrated the feasibility of 
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numerical reconstruction of holographic images using a densitometer-scanned 

holographic plate [2]. Schnars and Jueptner, in 1994, were the first to use a CCD camera 

connected to a computer as the input, completely eliminating the photochemical process, 

in what is now referred to as digital holography [3–5]. Various useful and special 

techniques have been developed to enhance the capabilities and to extend the range of 

applications. Phase-shifting digital holography allows elimination of zero-order and twin-

image components even in on-axis arrangement [6-8]. Optical scanning holography can 

generate holographic images of fluorescence [9]. Three-channel color digital holography 

has been demonstrated [10]. Application of digital holography in microscopy is 

especially important, because of the extremely narrow depth of focus of high-

magnification systems [11, 12]. Numerical focusing of holographic images can be 

accomplished from a single exposed hologram. Direct accessibility of phase information 

can be utilized for numerical correction of various aberrations of the optical system, such 

as field curvature and anamorphism [13].  

Digital holography has been particularly useful in metrology, deformation 

measurement, and vibrational analysis [14-16]. Microscopic imaging by digital 

holography has been applied to imaging of microstructures and biological systems [14, 

17-18]. Digital interference holography for optical tomographic imaging [19-24], as well 

as multiwavelength quantitative phase contrast digital holography for high resolution 

microscopy [25-28], was demonstrated. 
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1.2 Ophthalmic Imaging  

Examples of noninvasive ocular imaging technologies are scanning laser polarimetry 

(Retinal Nerve Fiber Analyzer GDx), [29, 30], confocal scanning laser tomography 

(Heidelberg Retinal Tomograph) [31], and optical coherence tomography (OCT), [29-

44]. For purposes of this discussion, OCT will be described in order to serve as a 

comparison to our technology, digital interference holography (DIH). OCT is a non-

contact, non-invasive optical imaging technique that uses a low-coherence source to 

determine the retinal thickness and to image optic nerve by means of cross-sectional 

images. OCT is probably the most significant development in ophthalmic imaging in the 

past decade [32-36]. The most basic form of OCT, time domain OCT (TDOCT), is based 

on the interference of low coherence light in a Michelson interferometer, and the 

reference mirror mechanically moves in order to scan the z axis. TDOCT generates an 

interference signal only when the reference mirror is at the same distance as the object’s 

reflecting surface. The distances need to match within the coherence length of the light, 

which therefore determines the axial resolution. OCT uses a low coherence, i.e. 

broadband, light source, such as a tungsten lamp or superluminescent diode (SLD). OCT 

is used in clinical practice to create cross-sectional images of in vivo retina at a resolution 

of approximately 10-15 microns, taking advantage of the fact that various layers of the 

retina vary in their reflectivity [44]. The highest reflection occurs in layers of the retina 

with cell surfaces and membranes. This includes the internal limiting membrane and the 

retinal pigment epithelium (RPE). Less reflective layers include the inner and outer 

nuclear layers. OCT imaging has become an important tool in the imaging and evaluation 

of retinal cross-sectional anatomy, allowing retinal specialists to diagnose diseases such 
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as epiretinal membrane and macular hole, and to monitor conditions such as macular 

edema with objective measurements. It also supplies reproducible estimates of retinal 

thickness with accuracy not previously possible. New developments in OCT, with 

resolution under 10 mμ , include spectral-domain OCT (SD-OCT), where the mechanical 

z-scanning of the TDOCT is replaced with spectral analysis, and swept-source OCT (SS-

OCT), where the spectral analysis is replaced with wavelength scanning of the light 

source [37-43]. An axial resolution of 1-2 mμ  has been reported using a femtosecond 

laser [39]. TDOCT provides the necessary resolution, but images are two dimensional 

only. The newer developments of FDOCT and SSOCT can now generate B-scan (cross-

sectional) images at video rate, but to image one square centimeter of the posterior pole 

of the retina without interpolation, at least 1000 linear OCT scans are required, and these 

have to be re-assembled by computer to give a 3D volume image.  

 In our lab [45], this method was demonstrated for surface and sub-surface 

imaging of biological tissues, based on the principle of wide field optical coherence 

tomography (WFOCT) and capable of providing full-color three-dimensional views of a 

tissue structure with about 10 µm axial resolution, about 100 ~ 200 µm penetration depth, 

and 50 ~ 60 db dynamic range. WFOCT technique is similar to OCT, but without x-y 

scanning provides full color information.  Also, the experiments were performed in three 

color channels (3 LED, red, blue, green) and the results were combined to generate the 

contour and the tissue structures of the specimen in their natural color. 

 Digital Interference Holography (DIH) technique is based on an original 

numerical method developed in DHM Laboratory of the Physics Department at USF, 



 5

where a three-dimensional microscopic structure of a specimen can be reconstructed by a 

succession of holograms recorded using an extended group of scanned wavelengths. 

DIH technology will be explained more elaborately in Chapter 3. 

 

1.2.1 Structure of the Retina  

Glaucoma is a group of eye diseases where vision is lost due to damage of the optic 

nerve. More precisely, the pathologic process results in the loss of retinal ganglion cells 

and their axons in the retinal nerve fiber layer resulting in thinning of the retinal nerve 

fiber layer (RNFL), [46, 47] . A yellowish white ring surrounding the optic disk, 

indicating atrophy of the choroid in glaucoma is called glaucomatous. Measurement of 

macular thickness is not only important in the diagnosis and monitoring of macular 

diseases; it has also been found to be useful in evaluating glaucomatous changes since up 

to seven layers of retinal ganglion cells are located at the macula, [48, 49]. In Figure 

1.1A, from top to bottom, the layers are: Inner Limiting Membrane, Nerve Fiber Layer, 

Ganglion Cell Layer, Inner Plexiform Layer, Inner Nuclear Layer, Outer Plexiform 

Layer, Outer Nuclear Layer, Inner and Outer Segments of Photoreceptors, Retinal 

Pigment Epithelium, and Choroid. The ganglion cell layer is the layer with dark red 

nuclei (second blue arrow from the top). Another arrangement of the retinal layers, 

showing the basic circuitry of the retina, is illustrated in Figure.1.1B and Figure 1.1C 

[50]. OCT cannot image these nuclei. The best that current OCT can do is measure the 

thickness of the "ganglion cell complex", which consists of the top three layers (top 3 

blue arrows of Figure 1.1A). Adaptive optics cannot do it either. For the diagnosis and 

management of glaucoma, we would like to have maps of the density of ganglion cells as 
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function of location in the back of the eye. The challenge for the future will be to develop 

a 3D imaging technology to identify what percent of cells are lost due to the retinal 

damage.  

 

Figure 1.1. Structure of the Retina. (A) Section of retina (Kansas University, Medical 

Center), (B) Section of the retina showing overall arrangement of retinal layers. (C) 

Diagram of the basic circuitry of the retina. A three-neuron chain—photoreceptor, bipolar 

cell, and ganglion cell—provides the most direct route for transmitting visual information 

to the brain. Horizontal cells and amacrine cells mediate lateral interactions in the outer 

and inner plexiform layers, respectively. The terms inner and outer designate relative 

distances from the center of the eye (inner, near the center of the eye; outer, away from 

the center, or toward the pigment epithelium). 
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1.3 Biometry Imaging  

Available biometric technologies rely on the recognition of DNA residue, face, voice, 

iris, signature, hand geometry, and fingerprints. Depending on the complexity of the 

sensing method, these technologies may be classified in terms of accuracy, simplicity, 

acceptability, and as well as stability. One of the simplest and most acceptable human 

authentification methods is fingerprint recognition. Ancient Babylonian and Chinese 

civilizations used the fingerprint impressions as a method to sign documents. Later in the 

1880’s, the first fingerprint considerations were published by Henry Faulds in Nature 

[51]. He collected fingerprints from different nationalities and made the conclusion that 

the copy of the forever unchangeable finger furrows may assist in the identification of 

criminals. After a few years of experimental work, the Galton-Henry system of 

fingerprint classification was published and quickly introduced in the USA in 1901 for 

criminal-identification records [52].  

Fingerprint recognition systems can be classified in four main methods as 

follows: ink-technique, solid-state, ultrasonic, and optical. The traditional ink technique is 

based on using liquids and powder to enhance the contrast of the prints template [53]. 

The solid- state sensors method uses an array of sensing elements such as: pyro-electric 

material (thermal-type), piezoelectric material (pressure-type), or capacitor electrodes 

(capacitance-type) covered with a hard protective layer. For example, the thermal-type 

sensing technique is based on the temperature differences between the surface of the 

finger (ridges/ valleys) and each thermo-element sensor. The temperature difference data 

is read by a sensor that performs an 8-bit analog-to-digital (AD) conversion to output an 

image of the fingerprint. The cross-sectional reconstruction of a silicone rubber 



 8

fingerprint model was performed with a valley width of 100 µm and a height of 50 µm 

[54]. Ultrasonic scanners [55], use sound waves to see through skin fat and tissue. The 

difference in acoustic impedance between the finger pattern and the plate is obtained and 

the echo signal is recorded by the receiver and transformed into ridge depth data. This 

technology allows creating images of difficult prints because the quality of the images is 

not affected by the dirt, grease, and grime. Fingerprint sensing by optical sensors has 

been used since 1970. The first optical sensor was based on the total internal reflection 

(TIR). The finger is illuminated through a prism and a reflectance profile of the object is 

built based on reflected light from the fingerprints. For instance, the LightPrintTM, 

developed by Lumidigm, uses an optical sensor based on TIR. The skin layers are 

scanned by a range of wavelengths to improve the quality of the images due to different 

skin condition and to improve spoofing protection of the scanners [56]. An application of 

optical polarization was demonstrated [57] to enhance the visibility of the latent 

fingerprint without using any chemical treatment. A novel optical coherence tomography-

based system was demonstrated for depth-resolved 2-D and 3-D imaging to provide 

information of both artificial and natural ridge and furrow patterns simultaneously [58-

60]. More recently, another scanner, full-field swept-source optical coherence 

tomography, uses a combination of a superluminescent broadband light source and an 

acousto-optic tunable filter. The light source is tuned to operate at different wavelengths. 

This scanner was used in forensic science to image the three-dimensional structure of 

latent fingerprints [61-63]. 
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1.3.1 Fingerprint Patterns  

Features of fingerprints can be classified in three levels [53, 64-69]. Level 1 feature refer 

to the pattern type, such as arch, tented arch, left loop, right loop, double loop, and whorl. 

Level 2 features are formed when the ridge flow is interrupted by some irregularities, 

known as minutiae. Examples of minutiae are bifurcation, ending, line-unit, line-

fragment, eye, and hook. Level 3 features include other dimensional characteristics like 

pores, creases, line shape, incipient ridges, scars, and warts. 

 

1.4 Optical Trapping Imaging 

Matter-light interaction reveals physical phenomena and object characteristics by 

monitoring optically trapped object fluctuations about equilibrium. Optical trapping 

microscopes can be classified by function of the illumination method, optical trapping 

schemes, optical detection modes, and applications. Position -tracking algorithms and 

trapping light (laser) are integral part of the applications and they are chosen as a function 

of the object being characterized. 

 Commercial optical trapping systems are preferable due to the flexibility to be 

attached to any microscope arm, but home-made systems are more convenient giving 

possibility to upgrade the system easily at a low cost. 

 Starting from a simple configuration, one or two trapping laser beams [70-72] to 

cool and trap neutral atoms, the optical trapping systems have become sophisticated 

devices. The invention of laser and the ability to control object position applying 

picoNewton forces have found applications in physics and biology. 
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 The main use for the optical trap is the manipulation of biological structures to 

study molecular motors and the physical properties of DNA [73, 74]. Optical sorting 

tweezers use an optical lattice to sort cells by size and by refractive index [75, 76]. The 

evanescent field and more recently surface plasmon waves propel microparticles along 

their propagating path [77, 78]. Optofluidics is a joint technology between microfluidics 

and micro-photonics. Optical control of the microfluidic elements using optical tweezers 

was also reported [79]. Another application of optical trapping techniques includes 

integrated lab-on-a-chip technologies where optical force landscapes are highly desirable 

to manipulate multiple microparticles in parallel [80]. 

 Position detection, trapping beam alignment and high NA microscope are the 

most challenging parts of the trapping system. The position detection [81] is possible 

using: video-based position detection (CCD) [82, 83], imaging position detection (QPD), 

laser based-position detection (QPD and back-focal laser beam), and axial position 

detection technologies. The video-based position detection is limited due to unavailability 

of a camera with high video acquisition rates. The benefit of this method is that the 

trapped sample can be imaged onto a CCD camera and make it desirable holography 

uses. 

 

1.5 Research Contribution 

The motivation of this work has been to develop and characterize optical imaging 

instruments for ophthalmology, biometry, and optical trapping, based on the latest 

development of digital holography. 
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 My early work focused primarily on developing a retinal scanner, based on 

Digital Interference Holography. The development of this instrument requires electro-

optic system integration including software development, as well as an understanding of 

biological specimens’ behavior, morphology, and physiology. Holograms acquisition, 

optical field reconstruction, and optical field superposition programs were developed to 

characterize the sample under study. This instrument uses high-speed, non-contact, non-

invasive technology, has no mechanical moving parts, has an axial resolution better than 

5 μm, and signal-to-noise ratio (SNR) of about 50 dB. To achieve these characteristics, 

the calibration scheme was modified by introducing a phase-matching technique that 

accounts for the dispersion in the system. A phase variable was introduced that minimizes 

the errors resulting from phase mismatch. 

 Calibration experiments using a resolution target demonstrates improvement of 

SNR with increasing number of holograms consistent with theoretical prediction. 

Imaging experiments on pig retinal tissue reveal topography of blood vessels as well as 

optical thickness profile of the retinal layer [84, 94]. We reported for the first time the use 

of DIH to image human macular and optic nerve tissue [85-93, 95, 96]. This might be of 

significance to researchers and clinicians in the diagnosis and treatment of many ocular 

diseases, including glaucoma and a variety of macular diseases. 

 DIH also offers phase unwrapping capability. By choosing appropriate 

wavelengths, the beat wavelength can be made large enough to cover the range of optical 

thickness of the object being imaged. Together with various techniques such as low 

coherence tomography and digital holography microscopy, we also demonstrated the use 

of DIH for imaging fingerprints [86].  
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 Most recently, I have focused primarily on the design and characterization of 

holographic optical tweezers for trapping and manipulating microspheres undergoing 

Brownian motion [87]. Hologram acquisition, optical field reconstruction, particle 

tracking, and statistics programs were developed to characterize the trapped particle. The 

future goal of this project is to develop a new tool to study how cells ingest foreign 

particles through the process known as phagocytosisa or to understand a variety of 

biophysical processes.  

 

1.6 Thesis Organization 

This dissertation is organized in the following way. Chapter 2 presents scalar field theory 

and discusses the reconstruction of the optical field by the angular spectrum and the 

Fresnel approximation. Chapter 3 discusses in more detail the theoretical background of 

the digital interference holography, the experimental apparatus, and calibration. Chapter 

4 covers the optimization methods of the digital interference holography system. In 

Chapter 5, the in-vitro imaging of ophthalmic tissue by digital interference holography is 

presented. The application of digital interference holography in biometry is presented in 

Chapter 6. The digital Gabor holography microscope together with the optical trapping 

apparatus is described and experimental results are presented in Chapter 7. Major 

conclusions and future directions are summarized in Chapter 8. 
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CHAPTER 2 
 

SCALAR DIFRACTION THEORY AND OPTICAL FIELD RECONSTRUCTION 

METHODS 

 

This chapter reviews numerical reconstruction algorithms for digital holography with 

emphasis on the angular spectrum method and Fresnel approximation method. A brief 

review of the diffraction principles are presented in Section 2.1. Numerical reconstruction 

methods are reviewed in Section 2.2. In Section 2.3 a comparison between the angular 

spectrum method and the Fresnel transform is presented. Results of the two 

reconstruction methods are shown in Section 2.4. Conclusions are presented in Section 

2.5. 

 
2.1. Introduction 
 
The first definition of the diffraction has been made by Sommerfeld [1] as “any deviation 

of light rays from rectilinear paths which cannot be interpreted as reflection or 

refraction.” The explanation of this phenomenon was made by Christian Huygens, as an 

answer to the question why the transition from light to shadow was gradual rather than 

abrupt [2]. After Thomas Young introduced the concept of interference, progress on 

further understanding diffraction was made in 1818 by Fresnel who made assumptions 

about the amplitude and phase of Huygens’ secondary sources. He also calculated the 
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distribution of light in diffraction pattern with excellent accuracy and introduced the 

obliquity or inclination factor, in order to account for the deficiency in the back wave 

propagation.  

 Both Huygens and Fresnel ideas were put together by Kirchhoff in a mathematical 

description of the boundary values of the light incident on the surfaces [3]. Kirchhoff 

formulated the so-called Huygens-Fresnel principle that must be regarded as a first 

approximation. The difficulties of this theory occurred when the boundary conditions 

must be imposed both on the field strength and its normal derivative. The Rayleigh – 

Sommerfeld diffraction theory eliminates the use of the light amplitude at the boundary, 

by making use of the theory of Green’s function [4, 5]. The Kirchhoff and Rayleigh-

Sommerfeld theories require the electromagnetic field to be treated as a scalar 

phenomenon, the diffraction aperture must be large compared with a wavelength, and the 

diffraction fields must not be observed too close to the aperture [6]. 

This study will be presented as a scalar theory, ignoring the vectorial nature of the 

electric and magnetic fields that make up light waves. The vectorial nature becomes 

important in dealing with polarization and non-isotropic media. On solving Maxwell’s 

wave equation, the electromagnetic wave has the form, ( , , ; ) ( , , ) iwtx y z t u x y z eψ −= , 

where ( , , )u x y z  is the complex amplitude of the wave and iwte− is the wave absolute 

phase time variation (see Appendix A). 

To apply the scalar theory, one needs to assume the polarization direction of the 

field with the unit vector,ε
G

, is constant and the vector field ( , , ) ( , , )u x y z u x y zε=
G G JG G

 

transforms to the scalar field, and consequently the spatial part of the electromagnetic 

wave , ( , , )u x y z , satisfies the scalar Helmholtz equation: 
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2 2( ) ( , , ) 0k u x y z∇ + =     (2.1) 

where /k w c=  is the wavevector, w  is the frequency of the light, c is the speed of light 

in vacuum, and 2∇  is the Laplacian operator.  This equation can be used to derive the 

equation for a general diffraction problem (i.e. an equation for the light field and, hence, 

the intensity, as a function of position behind an obstacle which is between the 

observation point and a given source). 

 

2.2. Green Functions. The Integral Theorem of Helmholtz and Kirchhoff. The 

Rayleigh-Sommerfeld Diffraction Formula 

 
Let U and V be any two complex-valued functions of position, and let S be a closed 

surface surrounding a volume V. If U, V, and their first and second partial derivatives are 

single-valued and continuous within and on S, Figure 2.1, the Gauss theorem can be 

applied to the vector fields U and V, 

( ) ( )2 2

V S

U V V U dv U V V U ds∇ − ∇ = ∇ − ∇∫ ∫v    (2.2) 

where 
n
∂

∇ =
∂

is the partial derivative in the outward normal direction at each point on S. 

 This theorem is the prime foundation of scalar diffraction theory. A Green 

function is chosen to be a scalar function for the Equation (2.1) and the derivative of the 

outgoing Green function over the small sphere has the expression, 

( ') 4G r r
n

π∂
− =

∂
     (2.3) 

Within the volume V’,G is forced to satisfy the Helmholtz equation, 

2 2( ) 0k G∇ + =       (2.4) 
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Substituting the two Helmholtz equations (2.1) and (2.4) in (2.2) in the left-hand side of 

the Green’s theorem, we find, 

( ) ( )2 2 2 2

' '

0
V V

U V V U dv UGk GUk dv∇ − ∇ = − =∫ ∫    (2.5) 

The right member of Equation (2.5) cancels, so the theorem reduces to, 

( )
'

0
S

U V V U ds∇ − ∇ =∫v     (2.6) 

or,  

( ) ( )
'S S

U V V U ds U V V U ds− ∇ − ∇ = ∇ − ∇∫ ∫v v    (2.7) 

For a general point 'r  on 'S , we have, exp( | ' |)( ')
| ' |
ik r rG r r
r r

−
− =

−
and 

'

( ') 4
S

G r r ds
n

π∂
− =

∂∫     (2.8) 

Letting ε  become arbitrarily small or at the limit of 'S  approaching 'P , Equation (2.6) 

will become: 

( ) ( ') 4 0
S

U G G U ds U r
n n

π∂ ∂
− − ⋅ =

∂ ∂∫v    (2.9) 

and therefore, 

1( ') ( ( )
4 S

U r U G G U ds
n nπ

∂ ∂
= −

∂ ∂∫v    (2.10) 

Considering a volume V” complimentary to V, 

"

1 ( ( ) 0
4 S

U G G U
n nπ

∂ ∂
+ =

∂ ∂∫v     (2.11) 

Substitution of this result in Equation (2.7) and taking account of negative sign, yields, 
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1 ( | ' |) ( | ' |)( ') ( ( exp [exp ] )
4 | ' | | ' |S

ik r r ik r rU r U U ds
r r n n r rπ

− ∂ ∂ −
= −

− ∂ ∂ −∫v   (2.12) 

 The result is known as the integral theorem of Helmholtz and Kirchhoff. It allows 

the field at any point 'P  to be expressed in terms of boundary values of the wave on any 

closed surface surrounding that point. The final expression of the field ( ')U r  is, 

1 1( ') ( ) ( )
2 2S S

U r U G ds G U ds
n nπ π

∂ ∂
= = −

∂ ∂∫ ∫v v .  (2.13) 

 These results are known as the Rayleigh-Sommerfeld diffraction formula of the 

first and second kind respectively (Goodman). If a potential function and its normal 

derivative vanish at the same time, along any finite curve segment, then the potential 

function must vanish on the entire plane. 

 

 

 

Figure 2.1. Geometric Illustration for Helmholtz–Kirchhoff Integral Theorem. 

 

 Now, we want to calculate the field U at point P’ diffracted by a semi-transparent 

window SA cut in an opaque screen. 

( ') 1( ) ( ') cos( , ( ')) ( ) ( ')
| ' |

G r r ik G r r n r r ik G r r
n r r

∂ −
= − − − ≈ − −

∂ −
  (2.14) 
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and finally, 

1( ') ( ) ( ( ) ( '))
2 2

( ( ) ( '))

A A

A

S S

S

ikU r U G U r G r r ds
n

i U r G r r ds

π π

λ

∂
= = − − =

∂

− −

∫ ∫

∫

v v

v
  (2.15) 

This is known as the Huygens-Fresnel integral. The field ( ')U r  in plane z’ can be 

calculated from the field in plane z, ( )U r . 

 Let’s consider two parallel planes (x, y, z) and 0 0( , ; 0)x y z = at normal distance z 

from each other. The diffracting aperture (source) lies in the 0 0( , )x y  plane and the 

observation plane (reconstruction) lies in the (x, y). 

 

 

Figure 2.2: Huygens-Fresnel Principle in Rectangular Coordinate. (Adapted after 

J.W. Goodman, Introduction to Fourier Optics, Third Edition”). 

 

Huygens law states that the field ( )u r  at a time t is related to the field ( ')u r  at an 

earlier time t’ by the integral equation, 

( ) ( ') ( , ')
V

u r u r G r r dv= ∫     (2.16) 



 29

where the dependence of time was ignored.  

 Equation (2.13) can be stated as, 

1 exp( )( , , ) ( ( 0, 0; 0) cos
AS

ikrU x y z U x y z ds
i r

θ
λ

= =∫v   (2.17) 

Where θ  is the angle between the outward normal n and the vector r
G

 pointing 

from ( , , )x y z  and 0 0( , ; 0)x y z = , cos z
r

θ = , and 2 2 2
0 0( ) ( )r z x x y y= + − + − , and the 

Huygens-Fresnel principle can be written, 

0 0 0 0
exp( )( , , ) ( ( , ; 0)

AS

z ikrU x y z U x y z dx dy
i rλ

= =∫v   (2.18) 

 

2.3. Optical Field Reconstruction Methods 
 
Optical field reconstruction using diffraction methods involves the determination of the 

object amplitude and phase. Amplitude is a quantity proportional to the square root of the 

intensity in the diffraction pattern and represents the strength of interference at a specific 

point. Phase is the relative time of arrival of the scattered radiation (wave) at a particular 

point (e.g. photographic film), and this information is lost when the diffraction pattern is 

recorded. 

In digital holography a hologram is recorded digitally. The object field, ( , )O x y  

interferes with the reference field, ( , )R x y , at the hologram plane. Here, we use a setup in 

off-axis geometry, meaning the reference field interferes with the object field at an angle, 

θ . The interference between the object wave ( , ) ( , )exp[ ( , )]O OO x y Amp x y i x yϕ= and the 

plane reference wave ( , ) exp( ) exp[ 2 ( )]R x yR x y i i q x q yϕ π= = + is recorded in the hologram 

plane ),( 00 yyxx == , in form of intensity, ( , )h x y . ( , )OAmp x y is the amplitude and 
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),( yxOφ is the phase of the object beam. The other two quantities, xq and yq , are the 

carrier frequency of the reference beam in the x and y directions respectively. The 

complex amplitude of the interference pattern is: ( , ) ( , ) ( , )U x y R x y O x y= + . The hologram 

intensity pattern is recorded digitally by the CCD in the form: 

22

2

( , ) ( , ) ( , ) 1 ( , ) 2 ( , )cos( )

1 ( , ) ( , )exp[ 2 ( )] ( , ) *exp[ 2 ( )]

O O R O

O x y x y

h x y R x y O x y Amp x y Amp x y

Amp x y O x y i q x q y O x y i q x q y

ϕ ϕ

π π

= + = + + − =

+ + − + + +
  (2.19) 

The recorded image ),( yxh contains information about both the amplitude and phase of 

the object beam. To reconstruct the object optical field from the recorded holograms, 

various methods are used. Optical methods or forward methods are preferred to statistical 

and inverse methods. Here we will review numerical reconstruction algorithms for digital 

holography with emphasis on the Fresnel approximation and angular spectrum methods. 

The relationship between the two methods, or in other words, how to derive the 

Fresnel approximation starting from the angular spectrum of a plane wave, is given in 

Appendix B. The mathematical background of the Fourier transform is given in 

Appendix C. 

 

2.3.1 Fresnel Approximation 

The Fresnel transform, as an approximation to the Kirchoff diffraction integral ( Equation 

2.12), plays a significant role in evaluating the propagation of wave fields. In the one-

dimensional case it is defined by 

2 2( ) ( ) exp[ ( ) / ]D
Fr f a x i x f D dxα π

∞

−∞

= − −∫    (2.20) 
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Where ( )fα is called the integral transform of the signal ( )a x , or its spectrum, and D is 

a transform parameter (Jaroslavsky). When the complex amplitude of the wave field is 

linked with the wave field amplitude in a Fresnel plane of the object, 2D  is the product of 

the illumination wavelength, λ  with the distance between the object and the Fresnel or 

observation plane z , so 2D zλ= . We apply Rayleigh-Sommerfeld formula of the first 

kind to the calculation of ( ')U r , by computing the surface integral on S, surrounding the 

volume V. The more usable expression for the Huygens-Fresnel principle needs 

approximations for the absolute distance 2 2 2r x y z= + + , Equation (2.21) and for the 

wavevector along the propagation distance 2 2 2
z x yk k k k= − + , Equation (2.22). 

2 2
2 2 2 2 1/ 20 0

0 0 2

2 2 2 2
0 0 0 0

2 2

2 2
0 0

2

( ) ( )( ) ( ) [ (1 )]

( ) ( ) ( ( )(1 .....)
2 4

( ) ( )(1 )
2

x x y yx x y y z z
z

x x y y x x y yz
z z

x x y yz
z

− + −
− + − + = +

− + − − + −
= + − +

− + −
≅ +

  (2.21) 

and, 2 2 2 2
x y zk k k k= + + , where, 

2 2 2 2
2 2 2

2

2 2

.....)
2 4

2

x y x y
z x y

z

x y

k k k k
k k k k k

k k
k k

k
k

+ +
= − + = − − + ≅

+
−

  (2.22) 

And Equation (2.18) therefore becomes, 

2 2
0 0 0 0 0 0

exp( )( , , ) ( ( , ; 0) exp{ [( ) ( ) )]}
2

ikz ikU x y z U x y z x x y y dx dy
i z zλ ±∞

= = − + −∫∫  (2.23) 

Equation (2.23) is a convolution between the field at source and the convolution kernel, 

2 2exp( )( , , ) exp[ ( )]
2

ikz ikh x y z x y
i z zλ

= +  
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 Arranging this expression further, we get 

2 2 2 2
0 0 0 0

0 0 0 0

exp( )( , , ) exp[ ( )] ( ( , ; 0)exp[ ( ) )]
2 2

*exp[ ( )]
2

ikz ik ikU x y z x y U x y z x y
i z z z

ik xx yy dx dy
z

λ ±∞

= + = +

−
+

∫∫
 (2.24) 

 Ignoring the front factor, the integral represents the Fourier transform of the 

product of the complex field to the right of the aperture and a quadratic phase exponential 

(Goodman, Hariharan, Schnars, Kuo, Scott). 

 The expression (2.24) could be written as, 

2 2
0 0( , , ) exp[ ( )] [ ( , ; 0) ]

2
ikU x y z x y U x y z h
z

= + = ⋅F   (2.25) 

where 2 2
0 0exp[ ( ) )]

2 2
ik ikh ikz x y
z z

−
= + +  is the PSF of the system. 

 There are two common methods to calculate the Fresnel transform. The first is by 

evaluating the Huygens integral for back propagating waves, and the second is by 

multiplying the Fourier transform of the Fresnel field with the Fresnel optical transfer 

function h, and then performing an inverse Fourier transform. Here we discussed the 

second one which is the most common hologram reconstruction method since it requires 

only one FFT. 

 The minimum reconstruction distance is imposed by the discrete Fourier 

transform, and it has the expression, 
2

min
az
Nλ

= , where a N x= Δ is the size of the 

hologram, N x N is the hologram area in pixels, xΔ is the pixel’s size or the lateral 

resolution. We can also write the expression for the lateral resolution being 
0

zx
N x

λ
Δ =

Δ
, 
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where z is the reconstruction distance and 0xΔ is the pixel size of the CCD camera. The 

minimum of the reconstruction distance is min .z  

 

2.3.2 The Angular Spectrum of a Plane Wave 

The scalar diffraction theory can be reformulated using the theory of linear, invariant 

system. The Fourier components of any disturbance are analyzed at an arbitrary plane as 

plane waves traveling in various direction from that plane. The resultant field amplitude 

is the superposition off all these plane waves, at an arbitrary plane with a phase shift 

contribution due to the wave propagation.. 

We take Fourier transform of Equation (2.19), and obtain the spatial frequencies as 

follows: 

2
0

0

( , ) ( , ) [ ( , ) ] ( , ) * ( , )

( , ) ( , )
x y x y O x y x x y y

x y x x y y

k k k k Amp x y A k k k q k q

A k k k q k q

δ δ

δ

= + + + +

+ − −

H F
  (2.26) 

The first two terms represent the zero-order term and the third and forth represent the two 

conjugate images, real image centered around ),( yyxx qkqk −=−= and virtual image 

centered around ),( yyxx qkqk == . The first three terms can be filtered out in the Fourier 

space and the forth term is shift to the center of the coordinate to obtain the angular 

spectrum of the object, 0 ( , )x yA k k , in the hologram plane. To obtain the spectrum in the 

object plane, 0 ( , )x yA k k is backward propagated in the frequency domain, along the 

propagation distance ( Zz −= ), and has the expression: 

0( , , ) ( , )exp( )x y x y zA k k z A k k ik z=     (2.27) 

Taking the inverse Fourier transform, we obtain the reconstructed object wavefront, 
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1( , , ) { ( , ) exp( )}x y zU x y z A k k ik z−= ⋅F     (2.28) 

Breaking the reconstructed complex field into its polar components we get  

( , , ) ( , )exp[ ( , )]O rec O recU x y z Amp x y i x yφ− −=    (2.29) 

where ( , )O recAmp x y− , and ),( yxrecO−φ represent the reconstructed object wavefront 

amplitude and phase at .r In this way, we can have access to both the amplitude and the 

phase information. 

 Using the angular spectrum method in hologram reconstruction does not require 

any minimum reconstruction distance. Another benefit of using this method is the 

filtering capability in the frequency space to remove the background and the virtual term. 

 
2.4. Results 

In the previous section and Appendix B, we concluded the two optical reconstructed 

methods are identical within the paraxial approximation. Since the angular spectrum does 

not use any approximation, the Fresnel method will never yield similar results as the 

angular spectrum method does for small reconstruction distance, unless numerical 

parametric lenses are introduced for wavefront reconstruction to make small 

reconstruction distances possible without aliasing, but increasing the computational load 

[7, 8]. To have a concrete idea about how objects are imaged using the two reconstruction 

methods, we present a few results of various samples. The objects are: the USAF 1951 

resolution target, onion skin, and a US coin. Corresponding holograms recorded in off-

axis geometry are shown in Figure 2.3a, Figure 2.4a, and Figure 2.5a respectively. Their 

Fourier transforms are displayed in Figure 2.3b, Figure 2.4b, and Figure 2.5b. The bright 

spot in the center of images represents the DC term or the zero order of diffraction and 

can be separated from the real and the virtual images (located symmetrically of the DC 
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term) by choosing an appropriate angle between the object and reference wave fronts. 

The DC term represents the background or low frequencies features of the object. The 

virtual and real images account for high frequencies object features. Applying a circular 

filter (white circle) in the Fourier space we can get rid of the zero order term, virtual 

images and other noise present in the image.  

 Figure 2.3c and Figure 2.3d represent the amplitude and the phase images 

reconstructed from the hologram (Figure 2.3a), of an area of 1040 × 1040 2mμ  using the 

angular spectrum. The object is situated at a distance z = 270 μm from the hologram. 

Figure 2.3e, f, g, h represent the amplitude and the phase images reconstructed from the 

hologram (Figure 2.3a), of an area of 1040 × 1040 2mμ  using the Fresnel approximation. 

Figure 2.3e and Figure 2.3f are reconstructed with the minimum reconstruction distance 

2

min 7348az m
N

μ
λ

= =  (imposed by the discrete Fourier transform) and Figure 2.3g and 

Figure 2.3h are reconstructed with the reconstruction distance minz z< , 7000 mz μ= . 
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a)    b)   c)   d) 
 

  
e)   f)   g)   h) 

 

Figure 2.3: Holography of an USAF Resolution Target. The image area is 1040 × 

1040 2mμ  (256 × 256 pixels) and the image is at z = 270 μm from the hologram, 

0.575 mλ μ= , 1040 ma μ= , N=256, : (a) hologram; (b) angular spectrum; (c) amplitude 

and (d) phase images by the angular spectrum method; (e) amplitude and (f) phase 

images at minimum reconstruction distance 
2

min 7348az m
N

μ
λ

= =  by the Fresnel 

transform method; (g) amplitude and (h) phase images at the reconstruction distance 

7000 mz μ= (z < minz ) by the Fresnel transform method 
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Figure 2.4 is an example of how the lateral resolution is affected by the minimum 

reconstruction distance requirement. In Section 2.3.1 we have shown the lateral 

resolution is 0
0

( , )zx f z x
N x

λ
Δ = = Δ

Δ
. The area of the hologram (Figure 2.4a), 

reconstructed amplitude (Figure 2.4c), and phase (Figure 2.4d) is 235x176 2mμ , 

640x480 pixels which gives two reconstruction distances in each direction, x, y, 

2

min, 150x
x x

x

az z m
N

μ
λ

= = = , 
2

min, 112y
y y

y

a
z z m

N
μ

λ
= = = . The angular spectrum is not 

constrained by the hologram area and the lateral resolution is affected only by the optics. 

 

 

 a)   b)   c)   d) 
 

Figure 2.4. Holography of the Onion Skin. The image area is 236 × 176 2mμ  (640 × 

480 pixels) and the image is at z = 4.95 μm from the hologram: (a) hologram; angular 

spectrum; (c) amplitude and (d) phase, images by the angular spectrum method. 

 

Again, this is an example of a hologram recorded when the object is situated at a distance 

z = 198 μm from the hologram Figure 2.5. This distance is smaller than the 
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2

min 8370az m
N

μ
λ

= =  and the amplitude(Figure 2.5d) and phase images (Figure 2.5e)  are 

not qualitative images. When z < minz  aliasing occurs (Figure 2.5f). 

 

 
 
 a)   b)   c)   d) 
 

 
 

 e)   f)   g)   h) 
 

Figure 2.5. Holography of a US Coin. The image area is 1110 × 1110 2mμ  (256 × 

256 pixels) and the image is at z = 198 μm from the hologram, 0.575 mλ μ= , 

1110 ma μ= , N=256 pixels: (a) hologram; (b) angular spectrum; (c) amplitude and (d) 

phase images by the angular spectrum method; (e) amplitude and (f) phase images at 

minimum reconstruction distance 
2

min 8370az m
N

μ
λ

= =  by the Fresnel transform method; 

(g) amplitude and (h) phase images at the reconstruction distance 8000 mz μ= (z < minz ) 

by the Fresnel transform method. 
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 In summary, unique capabilities of the angular spectrum compared to the Fresnel 

approximation are: higher degree of accuracy as it is seen in all images obtained by the 

angular spectrum, filtering in the frequency domain shown in Figure 2.3b, Figure 2.4b, 

Figure 2.5b, and there is no minimum reconstruction distance.  

 

2. 5. Conclusion 

We demonstrated the capabilities of the two diffraction reconstruction methods, the 

angular spectrum and the Fresnel approximation in imaging resolution target, onion and 

coin. The two optical reconstructed methods are identical within the paraxial 

approximation. Since the angular spectrum is the true method, the Fresnel approximation 

will never give similar results as the angular spectrum method does. 
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CHAPTER 3 
 

DIGITAL INTERFERENCE HOLOGRAPHY 
 

This chapter introduces the principle of digital interference holography (DIH), geometry, 

apparatus, calibration, and phase unwrapping theory. The chapter is organized as follows: 

Section 3.1 describes the digital interference holography in comparison to the other 

optical imaging techniques. The digital interference holography technique is reviewed in 

Section 3.2. Section 3.3 presents the phase unwrapping theory based on DIH. Section 3.4 

describes the design of the DIH apparatus. Section 3.5 reviews the setup calibration and 

the scanning characteristics of the light source. Finally, conclusions are presented in 

Section 3.6. 

 

3.1. Introduction 

One of the important challenges for biomedical optics is noninvasive three dimensional 

imaging, and various techniques have been proposed and available. For example, 

confocal scanning microscopy provides high-resolution sectioning and in-focus images of 

a specimen. However, it is intrinsically limited in frame rate due to serial acquisition of 

the image pixels. Ophthalmic imaging applications of laser scanning in vivo confocal 

microscopy have been recently reviewed [1]. Another technique, optical coherence 

tomography (OCT), is a scanning microscopic imaging technique with micrometer scale 

axial and lateral resolution, based on low coherence or white light interferometry to 
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coherently gate backscattered signal from different depths in the object [2, 3]. Swept-

source optical coherence tomography is a significant improvement over the time-domain 

OCT [4-6], in terms of the acquisition speed and signal-to-noise ratio (SNR). A related 

technique of wavelength scanning interferometry uses the phase of the interference 

signal, between the reference light and the object light which varies in the time while the 

wavelength of a source is swept over a range. A height resolution of about 3 mμ  has 

been reported using Ti:sapphire laser with wavelength scanning range of about 100 nm 

[7, 8]. The technique of structured illumination microscopy provides wide-field depth-

resolved imaging with no requirement for time-of-flight gated detection [9]. 

 In the last few years, the scanning wavelength technique in various setups has 

been adopted by researchers for three-dimensional imaging of microscopic and 

submicroscopic samples. When digital holography is combined with optical coherence 

tomography, a series of holograms are obtained by varying the reference path length [38]. 

A new tomographic method that combines the principle of DIH with spectral 

interferometry has been developed using a broadband source and a line-scan camera in a 

fiber-based setup [39]. Sub-wavelength resolution phase microscopy has been 

demonstrated [40] using a full-field swept-source for surface profiling. Nanoscale cell 

dynamics were reported using cross-sectional spectral domain phase microscopy (SDPM) 

with lateral resolution better than 2.2 mμ  and axial resolution of about 3 mμ  [41]. A 

spectral shaping technique for DIH is seen to suppress the sidelobes of the amplitude 

modulation function and to improve the performance of the tomographic system [42]. 

Submicrometer resolution of DIH has been demonstrated [43]. 
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 Another optical tomographic technique, applied widely for determination of the 

refractive index [44-49], is based on acquiring multiple interferograms while the sample 

is rotating. The reconstruction of the phase distribution is performed using filtered back-

projection algorithm. Then the phase distribution is scaled to refractive index values. 

Refractive index distribution reveals information about the cellular internal structure of a 

transparent or semitransparent specimen.  

 In this paper, we use computer and holographic techniques with digital 

interference holography (DIH) to accurately and consistently identify and quantify 

different objects structure with mμ  resolution. This technique is based on an original 

numerical method [28], where a three-dimensional microscopic structure of a specimen 

can be reconstructed by a succession of holograms recorded using an extended group of 

scanned wavelengths. 

 

3.2. Principle of Digital Interference Holography 

Suppose an object is illuminated by a laser beam of wavelength λ . A point 0r  on the 

object scatters the light into a Huygens wavelet, )exp()( 00 rrikrA − , where the object 

function )( 0rA is proportional to the amplitude and phase of the wavelet scattered or 

emitted by object points (Figure 3.1a). For an extended object, the field at r is 

0
3

00 )exp()(~)( rdrrikrArE −∫ , where the integral is over the object volume. The 

amplitude and phase of this field at the hologram plane z = 0 is recorded by the hologram, 

as );,( λhh yxH . The holographic process is repeated using N different wavelengths, 

generating the holograms );,(),...,;,(),;,( 21 Nhhhhhh yxHyxHyxH λλλ . From each of the 

holograms, the field );,,( λzyxE  is calculated as a complex 3D array over the volume in 
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the vicinity of the object (Figure 3.2a). Superposition of these N 3D-arrays results in 

)(~)()(~)exp()( 0
3

000
3

00 rArdrrrArdrrikrA
k

−− ∫∑∫ δ . That is, for a large enough number 

of wavelengths, the resultant field is proportional to the field at the object and is nonzero 

only at the object points. In practice, if one uses a finite number N of wavelengths, with 

uniform increment )/1( λΔ  of the inverse wavelengths, then the object image )(rA repeats 

itself (other than the diffraction/defocusing effect of propagation) at a beat wavelength 

1)]/1([ −Δ=Λ λ , with axial resolution N/Λ=δ . By use of appropriate values of )/1( λΔ  

and N, the beat wavelength Λ  can be matched to the axial range of the object, and δ  to 

the desired level of axial resolution (see Appendix A).  
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     a) 

 

 

      b)  

 

 

Figure 3.1: Digital Interference Holography Geometry a) DIH Volume 

Representation, and b) process of DIH. H: hologram; E: optical field in the object 

volume; A: object function. See text for more details. 
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3.3 Multiple-Wavelength Optical Phase Unwrapping by Digital Interference 

Holography 

The optical thickness profile of transparent object can be obtained from quantitative 

phase images with sub-wavelength accuracy. Two important parameters are subsequently 

derived from the optical thickness profile, the physical thickness and the index of 

refraction of the sample. Quantitative phase images are already demonstrated using 

several digital holography techniques based on two or three wavelengths [50-54]. Using 

digital interference holography, we want to make use of the phase information to 

determine the physical height of the sample. The combination of phase images of two 

different wavelengths 1λ  and 2λ results in another phase image whose effective or beat 

wavelength is 2121 / λλλλ −=Λ . By choosing the two wavelengths close enough, the beat 

wavelength can be made large enough to cover the range of optical thickness of the 

object. This is another example of the capabilities of digital holography that are not 

possible in real space holography. The phase difference between two wavelengths 1 2,λ λ  

is: 12 1 2
1 2

1 14 ( )( )hnφ φ φ π λ
λ λ

= − = − , where ( )n λ  is an approximate value of the refractive 

index of the sample being imaged. Consequently, by choosing an appropriate 

combination of wavelengths, the height profile of an image is: 

 

1 2 1 2

1 2

12
1 1 4 ( )4 ( )( )

h
nn

φ φ φ φ
π λπ λ

λ λ

− −
= = Λ

−
.    (3.1) 
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3.4. Experimental Setup 

The basic configuration of the apparatus is a Michelson interferometer, Figure 3.2. The 

light source is a Coherent 699 ring dye laser, pumped by Millenia V diode-pumped solid-

state laser, tunable over a range of 565 nm to 615 nm with an output power of up to 500 

mW. The laser output is spatial-filtered and collimated. The focusing lens L2 focuses the 

laser on the back focus of the objective lens L3, so that the object is illuminated by a 

collimated beam.  

 

 

Figure 3.2. Digital Interference Holography Apparatus. RDL: ring dye laser; M’s: 

mirrors; SF: spatial filter and expander; L’s: lenses; P’s: polarizers; BS: polarizing 

beamsplitter; QW’s: quarter waveplates; A: aperture; H: hologram plane; OBJ: object; 

REF: reference mirror; MM: motorized micrometer; MMC: controller for MM. 
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The lenses L3 and L5 form a microscope pair, Figure 3.3, so that the CCD 

acquires a magnified image of a plane H in the vicinity of the object plane. The reference 

mirror is an optical conjugate of the plane H through the matching objective lens L4. 

Then the image acquired by the CCD is equivalent to a holographic interference between 

a plane reference wave and the object wave that has propagated (diffracted) over a 

distance z from the object plane. In general the object plane may be at an arbitrary 

distance z from the hologram plane H, and the object can be numerically brought back in 

focus by the digital holography process. But in practice, it is advantageous to keep the 

object plane in focus to simplify the optical alignment and to help identify the object 

portion being imaged, as well as minimizing potential secondary aberration effects. The 

polarization optics – polarizer P2, analyzer P3, quarter wave plates, and polarizing beam 

splitter – is used to continuously adjust the relative partition of optical power between the 

object and referernce fields and to maximize the interference contrast. The polarizer P1 at 

the output of laser is used to continuously adjust the overall power input to the 

interferometer. The CCD camera (Sony XC-ST50) has 780 x 640 pixels with 9 mμ  pitch, 

and is digitized with an 8-bit monochrome image acquisition board (NI IMAQ PCI-

1407). Slight rotations of the reference mirror and object planes enable the acquisition of 

off-axis hologram. A variable aperture placed at the back focal (Fourier) plane of the 

objective lens L3 can be useful in controlling the angular spectrum of the object field. 

The aperture acts as a Fourier filter that stops the scattered light coming from the object. 

Hence, relatively most of the light that passes the small disk filter corresponds to a small 

scattering angle. 
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Figure 3.3. Rays diagram 

 
 When laser light travels through the linear polarizer, Figure 3.4a, a selected 

vibration plane is passed by the polarizer (parallel to the transmission axis) and the 

electric field vectors vibrating in all other orientations are blocked. The polarized beam 

splitter reflects part of the laser beam, linearly polarized at 90o from its original plane, to 

the object and also the BS transmits part of the laser beam to the reference. When the 

light is incident of a quarter-wave plate, QW, the light is divided into two equal electric 

field components and one of them is retarded by a quarter-wave plate, producing a 
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circularly polarized light. After passing back through the QW plate, Figure 3.4b, the 

reflected light is linearly polarized at 90o from its original plane. The reflected light from 

the object passes as a transmitted wave through the beam splitter and it combines at the 

analyzer plane with the reflected light from the reference mirror. The analyzer is utilized 

to control the amount of light passing through the crossed pair (polarizer-analyzer), and 

can be rotated in the light path to enable various amplitudes of polarized light to pass 

through. 

 

 

 
Figure 3.4. Polarization Control in Digital Interference Holography 

 

3.5. Experimental Calibration 

3.5.1 The tuning characteristics of the light source 

The light source used in this experiment was a dye laser pumped by a solid state laser. To 

obtain the tuning range of about 40 nm necessary for our experiments, Rhodamine 6G 
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(R6G) dissolved in ethylene glycol has been chosen. The tunning curve is shown in 

Figure 3.5. The wavelength tunable range of 34 nm for this experiment was between 568 

nm to 602 nm. The tunable wavelength range determines the axial resolution of the 

image, while the tuning resolution or the wavelength increment determines the axial 

range, or the axial size of an object. The ability to distinguish axial distances of various 

layers of a tissue is called the axial resolution, zδ . This tuning parameter is obtained in 

the following way:  

N
z

k
kk Λ

===Λ
Δ

== δ
δλ
λ

δ
π

λ
λπδ

λ
π ,2,2,2 2

2   (3.1) 

where, λ is the center wavelength, δλ is the wavelength increment, k is the wavevector, 

kδ is the wave number increment, zδ is the axial resolution and Λ is the object axial size. 

The hologram acquisition process is described in Appendix D. Figure D.1 shows the 

main screen of the DIH software, written in Labview 8.5. The wavelength scanning 

process is controlled by a stepper motor that changes the birefringent filter of the laser in 

small increments, changing the laser wavelength when it rotates, Figure D.2. 
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Figure 3.5. Tuning Curve of the Rhodamine 6G 
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3.5.2 The calibration curve 
 
The digital interference holography requires a sequence of wavelength within the 

Rhodamine 6G spectral range. To be able to get the right wavelengths when the 

controlled micrometer changes the birefringent filter we used a monocrometer (CVI 

Digikrom 240) with with a spectral resolution of ca. ( 12cm−± ). Two calibrations were 

performed, micrometer position versus wavelength (Figure D.3) and, micrometer position 

versus wavevector (Figure D.4). The points represent measurements and the solid curve 

theoretical values. The calibration curves are: 2
0 1 0z a a aλ λ= + + , and 

2
0 1 0

1 1
( )z b b b
k k

= + +  viceversa, where 2 1 0, ,a a a and 2 1 0, ,b b b are the calibration 

coefficients. 

 

3.6. Conclusions 

We have characterized the digital interference instrument in terms of scanning 

parameters. They are: the wavelength range of the source, the axial size of the object, and 

the axial resolution of the system. In the following, we will optimize and evaluate the 

DIH technique in imaging and characterize human, animal tissue and fingerprint patterns.  
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CHAPTER 4 
 

OPTIMIZATION OF DIGITAL INTERFERENCE HOLOGRAPHY 
 

In the previous chapter, we presented the principle of the digital interference holography 

and the fundamental parameters that characterize the digital interference holography 

system. An improved digital interference holography (DIH) technique is proposed. This 

technique incorporates a dispersion compensation algorithm to minimize the phase 

variation in the system. Using this instrument we acquired successfully tomographic 

images of the resolution target wrapped with scotch tape with a signal-to-noise ratio of 

about 50 dB. To demonstrate the capabilities of our system we also reconstructed 

tomographic and volume fundus images in human and animal eyes with narrow axial 

resolution less than 5 μm. The chapter is organized as follows: Section 4.1 describes the 

dispersion compensation based on wavelength. The significance of the signal-to-noise 

ratio in DIH system is presented in Section 4.2. In Section 4.3 are shown various results. 

Conclusions are presented in Section 4.4. 

 

4.1. Dispersion Compensation-Phase Matching 

Tunable lasers are particularly sensitive to chromatic-dispersion, ( )n λ , characteristics of 

materials, in particular second-order ''k  and third order dispersion '''k , which typically 

cause broadening of the axial point spread function [3]. Any mismatch in the length of 
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the reference and sample arms of the interferometer will generate wavelength dependent 

phase error. Precise measurements of any sample characteristics using tunable lasers 

acquire accurate measuring of the media dispersion effect in the sample arm of the 

interferometer. Recent studies have been reported to measure the refractive index of 

ocular media using white-light interferometry [4]. The study concluded the dispersion of 

aqueous and vitreous humors for bovine, monkey, goat, and rabbit did not vary from the 

dispersion of water. Numerous approaches have been used to measure the second order 

dispersion. The most common method is to insert a dispersive material in the reference 

arm to compensate the sample dispersion in the object arm [5, 6]. A numerical dispersion 

compensation method was introduced for optical coherence tomography [7] to 

compensate for the depth resolution loss. It is based on the correlation of the depth scan 

signal with a depth-dependent correlation kernel taken as a Gaussian temporal 

distribution. Another numerical compensation of dispersion mismatch was demonstrated 

in real space directly to experimental hologram using wavenumber scanning. The cosine 

function (that contains the dispersion mismatch iφ ) in the expression of the interferogram 

is transformed to a complex function followed by multiplication with an exp( )ijφ−  in the 

complex Fourier transform operation [8, 10].  

In DIH [13, 14], the laser beam is tuned from short to high wavelengths. The phase 

calculated by digital holography is given by λπϕ /2 zkz == , where z is the distance of an 

object point relative to the position of the reference mirror and λ  is the wavelength of the 

laser. Uncertainty in k or z leads to phase error, which needs to be corrected for. 

Dispersion error (uncertainty in k) tends to have severe effect on the accuracy due to its 

accumulative nature. Short wavelengths are associated with higher frequency periodicity 
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of interference while long wavelengths are associated with a slow periodicity of 

interference. As the optical path difference between the reference and the object arms 

increases, ex. because of the ocular media, the modulation across the spectrum increases 

in frequency because short wavelengths accumulate more phase than longer wavelengths 

do [9]. All optical components and ocular media dispersion contribute to the distortion of 

the spectrum. The function )(kφ  is not linear with respect to the wavenumber λπ /2=k . 

This function can be expanded in Taylor series, around the center wavenumber 

cck λπ /2= , with cλ  being the center wavelength.  
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The dispersion components are: first term is a constant offset, second term is the 

group-delay, third term is the group-velocity dispersion or chromatic dispersion, and the 

last term represents higher order dispersion. The third term in the Equation (4.1) is the 

cause of the broadening of the input signal as it travels through a dispersive media. This 

fact has a direct impact in worsening of the axial resolution and the signal to noise ratio 

of the optical field superposition. The process of dispersion-compensation becomes 

complicated due to the higher order terms in Equation (4.1). 

We employed the following method to estimate the phase corrections. For example, 

from each hologram )( nH λ , a 3D object field is reconstructed. The expression of the free 

error phase of this field is given in the Equation (4.2). It has a 2D phase profile at a 

suitable value of z that corresponds to the location of the object, 

 { }( , ) ( , ) phase ( , , ; )n n O rec n nx y x y obj x y z k zφ φ λ−= = =  (4.2) 
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where nk  are various wavenumbers , and nk z  are the free error phases for each of nk ’s. 

Next step is to calculate the difference profiles, 

1( , ) ( , ) ( , ) ( , )n n nx y x y x y k z x yδφ φ φ δ−= − = ⋅    (4.3) 

where ( ),z x y  is the z-profile of the object being imaged. If there are not errors in the 

wavenumber estimation, then all nδϕ ’s for various n’s should be identical since kδ ’s are 

perfectly equally spaced between holograms. Otherwise, the uncertainties introduce 

phase error, n nk zε = Δ , so that the Equation (4.3) will become, 

'( , ) ( ) ( , )n n n n nx y k k z x yφ φ ε= + Δ ⋅ = +    (4.4) 

where kΔ  is the deviation from the nominal constant k , and the new difference profile, 

1 1'( , ) '( , ) '( , ) ( , ) ( )n n n n nx y x y x y k z x yδφ φ φ δ ε ε− −= − = ⋅ + −   (4.5) 

The idea is to find the series nεεε ,...,, 32  that makes 2 3, ,..., nδφ δφ δφ  as identical as 

possible. This is done by taking the difference 1 1'( , ) '( , )n x y x yδφ δφ ϕ− − + , modulo π2 , and 

find nε ’s by minimizing 1 1
,

'( , ) '( , )n
x y

x y x yδφ δφ ϕ− − +∑  versus the variable ϕ . This 

procedure assumes that ),( yxz  is a well-defined 2D function, and gives very accurate and 

straightforward estimate of ε ’s. With diffuse or multilayered objects, it is more difficult 

to obtain completely deterministic procedures to obtain ε ’s. In that case, one needs to 

reduce the domain ),( yx  to an area of the object known to have a well-defined single-

surface profile. 

 

 



 63

4.2. Signal – to – Noise Ratio 

Addition of a series of N cosines or imaginary exponentials yields: ∑
=
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π , where Λ= /2πδk . The signal to noise ratio (SNR) of the 

peaks at ,...,0 Λ=z  grows proportional to 2N , while the width of the peak narrows as 

N/~ Λδ . This behavior of the SNR and resolution is achieved only if all the amplitudes 

and phases of cosines are identical. Each hologram captured by the camera is normalized 

by the 2D average of each hologram to compensate for the laser power variation across 

the tuning range. 
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4.3. Results  

4.3.1. Resolution Target  

We used a U.S. Air Force resolution target, with an area of 1040 x 1040 2mμ , 256 x 256 

pixels, as a standard to calibrate the system. The area selected in the Figure 4.1a 

represents group 2, element 3 and group 4 elements 2, 3, 4, 5, 6 of the resolution target. 

The bars in group 4, element 6 with 17.54 mμ  width are evident. The reconstruction 

distance z, representing the distance from the object to the hologram plane is 643.56 mμ . 

 The complex field of the resolution target is computed separately for 50 

wavelengths by numerical diffraction using the angular spectrum method, which gives an 

axial range of 500 mμΛ =  and axial resolution of 10z mδ μ= . All 3D electric fields are 

added together to obtain a 3D electric field of the object being imaged. Cross-sections of 
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the volume can be taken in the x, y, and z planes. Cross-sectional images in the y-z planes 

Figure 4.1b, and x-z planes Figure 4.1c, are shown below. The resolution target is an 

object without internal structure and the reflection of the laser beam takes place at the 

surface of the resolution target. A piece of clear tape is placed on top of the resolution 

target to provide a second surface for demonstration of tomographic imaging. The first 

layer (interrupted) in Figure 4.1b, 4.1c is the reflection that comes from the chromium 

coated surface. The second layer that can be seen in Figure 4.1b, 4.1c is the reflection 

from the attached tape surface.  

 

 

  a)     b)     c)  

 

Figure 4.1. The Reconstructed Volume of the Resolution Target: (a) x-y cross-

section, 1040 x 1040 2mμ . (b) y-z cross sections at various x values, 500 x 1040 2mμ , 

from left to right, x1, x2, and x3. (c) x-z cross sections at various y values, 1040 x 500 

2mμ , from top to bottom, y1, y2, and y3.  
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 We have tested the improvement of SNR with increasing number of holograms N. 

As described above, the SNR is expected to grow as 2N . As seen in Figure 4.2, the 4-

fold increase in N from 100 to 400 lowers the noise from -30 dB to about -45 dB, which 

is consistent with 10 log16 12dB⋅ = . This data set is without the clear tape attachment.  

 

 

 

Figure 4.2. Signal-to-Noise-Ratio Improvement. The peak in each semi-log graph 

represents the surface of resolution target. As N increases four-fold the SNR increases by 

12 dB, as expected. 

 

4.3.2 Biological Samples: Pig Retina  

In the following, we present a few examples of tomographic imaging of biological 

specimens using digital interference holography. Figure 4.3 and Figure 4.4 are images of 

a porcine eye tissue provided by the Ophthalmology Department at the USF. It was 

preserved in formaldehyde, refrigerated and a piece of the sclera, with retinal tissue 

attached, was cut out for imaging. The holographic image acquisition and computation of 
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the optical field are carried out for each of 50 wavelengths in the range from 565 nm to 

602 nm. Superposition of images, in DIH processes described above, reveals the principal 

features of the retinal anatomy. The imaged surface areas are 0.67 x 0.67 mm2 for Figure 

4.3 and 1.04 x 1.04 mm2 for Figure 4.4. The axial range 500 mμΛ =  and axial 

resolution 10z mδ μ=  for both image sets. The measured SNR for these images was about 

45~55 dB. 

 In Figure 4.3, the images reveal convex surfaces of blood vessels, as well as about 

150 mμ  thick layer of retina on top of the choroidal surface. Apparently, the blood vessels 

in figure Figure 4.3 were fixed with blood in them, while figure Figure 4.4 shows mostly 

empty and flattened blood vessels. In fact, the preparation and handling of the tissue 

sample resulted in tear of some of the retinal tissue. Thus the upper right half of Figures 

4.4 has intact retinal tissue, while the lower left half is missing the retinal layer and the 

choroids surface is exposed. In Figure 4.4b, the boundary marked ‘c’ is the bare choroidal 

surface, while the surface ‘a’ is the choroidal surface seen through the retinal surface ‘b’. 

The index of refraction of the retinal layer causes the choroidal surface to appear at a 

different depth compared to the bare surface, causing the break in the outline of the 

choroidal surface in Figures 4.4b and Figures 4.4c. 
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  a)    b)    c)   

Figure 4.3. The Reconstructed Volume of the Retina with Filled Blood Vessels: (a) 

x-y cross-section, 670 x 670 2mμ . (b) y-z cross section along x1, 500 x 670 2mμ . (c) x-z 

cross sections at various y values, from top to bottom, y1 and y2, 670 x 500 2mμ . 

 

 

 a)   b)    c) 

Figure 4.4. The Reconstructed Volume of the Retina with Empty Blood Vessels: (a) 

x-y cross-section, 1040 x 1040 2mμ . (b) y-z cross sections along x1, x2, and x3, 500 x 

1040 2mμ . (c) x-z cross sections at various y planes, from top to bottom, y1, y2 and y3, 

1040 x 500 2mμ . 
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 The dispersion-compensation method is applied to all reconstructed samples from 

above. As an example the phase matching technique was demonstrated on human macula. 

The imaged surface area is 5020 x 5020 2mm , Figure 4.5a, with a physical axial range 

209.75 mμΛ =  and physical axial resolution 4.19z mδ μ= . Tomographic images of the 

human macula are shown in Figure 4.5b, and Figure 4.5c respectively. Nerve fiber layer 

and retinal pigment epithelium are emphasized in Figure 4.5b by applying the phase 

correction. The optical thickness between the retinal nerve fiber layer (NFL) and the 

retinal pigment epithelial layer (RPE) is about mμ84 . 

 

 

Figure 4.5. Phase-Matching Demonstration on Human Macula Sample: a) x-y cross-

section, FOV=5000 x 5000 2mμ ; b) x-z cross section along the dashed line from Figure 

4.5a, 5020 x 209.75 2mμ  with the phase-matching scheme included; c) x-z cross sections 

along the dashed line from fig.3a, 5020 x 209.75 2mμ  without phase-matching scheme 

included; Δλ: 0.560-0.600 mμ ; mz μδ 19.4= ; myx μδδ 6.19== ; NX= NY=256 pixels; NZ= 

50 pixels. 

 

 

y3 
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4.4. Conclusion 

We have presented results of imaging experiments using digital interference holography. 

Calibration experiments using resolution target demonstrates improvement of SNR with 

increasing number of holograms consistent with theoretical prediction. Imaging 

experiments on retinal tissue reveal topography of blood vessels as well as optical 

thickness profile of the retinal layer. The SNR of tissue images is comparable to that of 

resolution target, implying the imaging system is operating at close to theoretical 

optimum. Further improvement in SNR may be achieved if the hologram number N is 

increased further. At this point, however, imperfection in the phase matching scheme 

seems to be limiting such improvement. Modification of the hologram exposure method 

have to be made so that the holograms are taken at equal intervals of wave vectors, not 

wavelengths, as well as automatically minimize the reference-object distance difference 

by a simple interferometric tracking and feedback. The next chapter covers the in-vitro 

imaging of the human ophthalmic tissue using DIH, and a comparison of ophthalmic 

devices capabilities is given relative to the DIH. 
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CHAPTER 5 
 

IN-VITRO IMAGING OF OPHTHALMIC TISSUE BY DIGITAL 

INTERFERENCE HOLOGRAPHY 

 

This chapter introduces the in-vitro imaging of human optic nerve head and retina by the 

digital interference holography. Samples of peripheral retina, macula, and optic nerve 

head from two formaldehyde-preserved human eyes were dissected and mounted onto 

slides. Holograms were captured by a monochrome CCD camera (Sony XC-ST50, with 

780 x 640 pixels and pixel size of ~ 9 mμ ). Light source was a solid-state pumped dye 

laser with tunable wavelength range of 560-605 nm. Using about 50 wavelengths in this 

band, holograms were obtained and numerically reconstructed using custom software 

based on NI LabView. Tomographic images were produced by superposition of 

holograms. Section 5.1 reviews some of the eye fundus diseases identified with existent 

ophthalmic devices. Section 5.2 gives details of samples preparation and ophthalmic 

tissue. Section 5.3 discusses the experimental setup for ophthalmic imaging. Section 5.4 

presents experimental results. Finally section 5.5 concludes this chapter. 

 

5.1. Introduction  

Imaging methods have become a critical player in the field of ophthalmology, and 

currently the clinical ophthalmologist depends heavily on such imaging to guide 
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diagnosis and treatment decisions. The optic nerve and macula are emphasized in current-

day ocular imaging. Diseases of optic nerve (glaucoma) and macula (age related macular 

degeneration, epiretinal membrane, cystoid or diabetic macular edema) can be objectively 

diagnosed and monitored with the aid of optical imaging techniques. For glaucoma 

management, accurate evaluation and assessment of optic disc topography and 

neuroretinal rim area is helpful for tracking glaucomatous change [1-8]. Macular 

thickness - in particular nerve fiber layer and ganglion cell layer thickness - may also be 

important in evaluating glaucomatous changes [9,10]. Studies have shown correlations 

between optic nerve cup measurements (cup volume, the ratio of cup area to disc area, 

and cup shape) and nerve fiber number [9].  

Treatment of macular diseases, such as age-related macular degeneration and cystoid 

macular edema, depends on accurate knowledge of retinal thickness and microanatomy. 

Drusen can be identified in dry macular degeneration with tomographic imaging 

techniques; more importantly, subretinal fluid can be identified in exudative macular 

degeneration. Epiretinal membranes can be visualized above the nerve fiber layer and aid 

in surgical planning. Macular edema, often difficult to assess clinically, can be easily 

diagnosed and objectively followed throughout treatment to mark resolution of 

intraretinal fluid by tomographic imaging.  

Digital Interference holography (DIH) is similar to OCT, in that it offers rapid 3D 

imaging with theoretically higher resolution [17-25]. The goal of the present study is to 

evaluate the thickness of the macula and to quantify optic nerve head characteristics 

(shape, diameter, cup depth, and cup width), using micrometer resolution DIH. DIH may 

provide another option in ocular imaging, potentially providing high resolution 3D 
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information which could potentially aid in guiding diagnosis and treatment of many 

ocular diseases.  

 

5.2. Methods 

5.2.1 Specimen Preparation 

Each of the two formaldehyde-preserved human eyes were obtained from the Lions Eye 

Institute for Transplant & Research (Tampa, FL) and dissected into two hemispheres. 

Sample preparation was performed under a microscope to minimize tissue damage. The 

inner vitreous was peeled away using tweezers and the sclera was removed using 

microforceps. Samples of the peripheral retina, macula, and the optic nerve head were 

removed and flat-mounted on microscope slides. Due to desiccation of tissue, measured 

macula thickness and optic disc parameters are smaller compared to normal values. The 

research did not meet the USF definition of human research activities; therefore, IRB 

approval was not required. 

 

5.2.2 Macula and Optic Nerve Characteristics 

The term "macula" clinically refers to the area of the retina within the temporal vascular 

arcades, typically spanning a diameter of 5-6mm. Histologically, it is a region with 

multiple layers of ganglion cell nuclei. The neurosensory retina can be divided into 

several layers which include (from anterior to posterior): internal limiting membrane, 

nerve fiber layer, ganglion cell layer, inner plexiform layer, inner nuclear layer, outer 

plexiform layer, outer nuclear layer, inner and outer segments of photoreceptors, and 
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retinal pigment epithelium. Studies report central foveal thickness in normal patients to 

be an average of 182 microns by OCT measurement [28, 32]. 

A schematic of optic disc head geometry is shown in Figure 5.1. The anterior 

surface of the optic nerve is visible ophthalmoscopically as the optic disc, and oval 

structure measuring 1.5 mm horizontally and 1.75 mm vertically, with a depression 

known as the physiologic cup located slightly temporal to the geometric center of the 

disc. The central retinal artery passes through this cup, vascularizing the retina. The optic 

nerve head consists of four parts: the superficial nerve fiber layer, the prelaminar region, 

the laminar region, and the retrolaminar region. Glaucoma damages the superficial nerve 

fiber layer [26]. 

 

Figure 5.1. Optic Disc Geometry and Parameter Representation. 
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5.3 Theory 

A hologram can record all information present in a wave front, including both amplitude 

and phase. For this reason it can reproduce the three-dimensional structure wavefront of 

the object. In DIH [17-25] images are reconstructed from a number of 2D digitally-

recorded holograms while the wavelengths are varied at regular intervals. The amplitude 

and phase information of the optical field are reconstructed from the digitally recorded 

holograms using the angular spectrum method [21-24, 33].  

The optical field, ( , ; )E x y z , is assumed to be a solution of the wave equation in the 

frequency domain (paraxial or Helmholtz equation) that has the 

form, 2 2( ) ( , ; ) 0k E x y z∇ + = , where 2 2 2 2
x y zk k k k= + + , k being the wavenumber or modulus 

( 2 /π λ= ) of the propagation vector, and , ,x y zk k k represent spatial frequencies along x, y, 

z respectively. One way to solve the wave equation is to use the angular spectrum method 

[21-24, 33]. Starting at the hologram plane where 0=z  (aperture plane), the Fourier 

transform of the optical field, ( , ;0)E x y , represents the angular spectrum at that plane, 

0 ( , ;0)x yA k k . A complex transfer function is used to propagate the angular spectrum 

along z axis toward the reconstruction plane at z = Z, and the angular spectrum becomes, 

0( , ; ) ( , ;0)exp( )x y x y zA k k z A k k ik z= . The field at any other z-plane can be calculated with 

just one inverse Fourier transform of the angular spectrum at that plane. The 

superposition of the multiple three-dimensional reconstructed optical fields yields 

tomographic images with narrow axial resolution. The range of physical sizes and 

resolution of objects are controlled by the proper choice of wavelength interval.  
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Under the Huygens principle, the source is treated as many individual point 

sources, located at Pr  from the center of the source, Figure 5.2. 

 

Figure 5.2. Sketch of Object, Hologram and Reconstruction Planes. Illustration of the object 

wave scattered off the object points and the propagate of the real image wave r to the 

reconstruction planes; zyx kkk ,,  represent the spatial carrier frequencies in the frequency space, 

imparted by the offset angle of the reference wave with respect to the optical axis of the scattered 

wave. 

 

Scatter from a point initiates spherical waves. When an object is illuminated by a 

laser beam of wavelength λ , each point on a wave front serves as a source of secondary 

spherical wavelets, ( )exp( )P PO r ik r r− , where the object function ( )PO r , is proportional 

to the amplitude and phase of the wavelet scattered or emitted by object point. The object 



 78

field, OBJ iE λ−  for a specific wavelength interferes with the reference field, REF iE λ−  at the 

hologram plane and the amplitude and phase of the object field at the hologram plane are 

recorded by the hologram, in form of intensity, ( , , )h h iH x y λ . 

2 2
0 0( , , ) | | | |i OBJ i REF i OBJ i REF i OBJ i REF iH x y E E E E E Eλ λ λ λ λ λλ ∗ ∗

− − − − − −= + + ⋅ + ⋅  (5.1) 

The first two terms represent the zero-order term and the third and forth represent 

the two conjugate images, virtual and real. We call the optical field at the hologram 

plane, );,( 0000 zyxE . Accordingly, a complex field );,( 0000 zyxE  at a position vector 

)0;,( 000 =zyx  can be decomposed into its spectrum of plane-wave components 

)0;,(0 yx kkA  defined by the Fourier transform, 

0 0 0 0 0 0 0 0 0( , ;0) ( , ; )exp[ ( )]x y x yA k k E x y z i k x k y dx dy= − +∫∫   (5.2) 

Given the field at a specified plane (z = 0), we wish to calculate the field at 

another plane z, where the object is located. The Fourier transform of the first three terms 

from Equation (5.1) are eliminated by applying a filter in the Fourier space of the object 

field, Equation (5.2). The angular spectrum can then be propagated in space along the z –

axis, perpendicular to the hologram plane, multiplying the Equation (5.2) by ]exp[ zik z . 

The reconstructed complex wave-field ),,( zyxE iλ  is found by: 

2 2 2 2
0

1( , , ) ( ) ( , , ) ( , ;0)exp[ ( )]
2i x y x y x y x yE x y z x y z dk dk A k k i k x k y k k k zλ π

= + + − −∫∫   

1
0 0{ { } { }} { }E h A H−= ⋅ = ⋅-1F F F F       (5.3) 

where, )](exp[
2
1),( 222 zkkkikkH yxyx −−=
π

 is the Fourier transform of the Huygens 

PSF for zk k≅ . The holographic process is repeated using N different wavelengths, 

generating the holograms 1( , , )h hH x y λ , … ( , , )h h iH x y λ . From each of the holograms, the 
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optical field ( , , , )iE x y z λ  is reconstructed as a complex 3D array over the volume in the 

vicinity of the object. This process is illustrated using the superposition principle, 

3

1 1

3 3

1

( ) ( ) ~ ( )exp( | |)

( ) exp( | |) ~ ( ) ( ) ~ ( )

N N

i P i P P
i i

N

P i P P P P P
i

E r E r O r ik r r d r

O r ik r r d r O r r r d r O r

λ

δ

= =

=

= − =

− ⋅ −

∑ ∑∫∫∫

∑∫∫∫ ∫∫∫
  (5.4) 

When N goes to infinity, the sum under the volume integral from Equation (5.4) 

becomes a delta function. In this way, the conjugate of the digitized scattered wave is 

reconstructed at various z positions and it is proportional to the real object image wave at 

r, ( )O r . The addition of the 3D optical fields behaves as a periodic sequence of pulse-

like peaks with an optical period or optical beat wavelength (or optical axial extent), 

2
OPD k

π
δ

Λ =  with optical axial resolution OPDzδ Λ
=

Ν
, wavenumber range max mink k kΔ = − , and 

wavenumber increment
1

kk
N

δ Δ
=

−
. In the Michelson interferometer the physical 

difference in length between the two arms, zΔ , depends on the optical path difference 

(OPD) between the object wave and the reference wave, the optical frequency dependent 

index of refraction )(λn , and the dependence on the double pass in reflection mode: 

)(2
1

λn
OPDz =Δ       (5.5) 

Assuming an index of refraction of 1.38 in the macular retina the physical 

difference in length becomes, 0.36( )z OPDΔ = . Therefore, the physical beat wavelength 

becomes, 0.36( )OPDΛ = Λ , and the physical axial resolution becomes, 

0.36( )z zOPDδ δ= . Knowing the axial resolution zδ and the number of pixels zN  along 
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the axial scan, z axis, one can obtain quantitative information of the height profile of the 

object. 

 

5.4 Ophthalmic DIH Scanning System 

The DIH instrument uses a high-speed, high-resolution, non-contact, non-invasive 

technology and has no mechanical moving parts. It consists of an off-axis Michelson 

interferometer in a backscattering geometry shown in Figure 5.3. The light source is 

generated by a Millenia V solid-state laser pumping a ring dye laser (Coherent 699), 

centered on nm575=λ  with an output power of up to 500 mW. The laser beam, after 

being spatially-filtered, collimated (BE) and linearly polarized (P2), is divided by the 

polarizing beam splitter (PBS) into two beams, sample (OBJ) and reference (REF) waves. 

Using the lens L1, the laser beam is focused on the back focus of the lens L2, so that the 

object is illuminated with a collimated light. The objective L3 is placed in the reference 

arm to compensate for phase curvature induced by L2 into the object arm. The lens L2 

projects the hologram plane H (an optical conjugate of the reference mirror plane) onto 

the CCD camera, through C-mount lenses L4, which form the image at the infinity. The 

digital camera (monochrome CCD, 30 frames per second, 780 x 640 pixels, with square 

pixels of 9 μm) acquires an image of the hologram at H, a superposition between a plane 

reference wave and the object wave that has diffracted over a distance z Z=  from the 

object plane. We call Z  the reconstruction distance due to the fact the object can be 

numerically brought in focus by adjusting the distance Z , without moving the object or 

the CCD camera. Polarizers P1, P2, analyzer P3 and quarter-wave plates QW are used in 

conjunction with the polarizing beam splitter PBS to continuously adjust the overall laser 
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power in the experimental setup and inside of the interferometer. The analyzer P3 is cross 

polarized with regard to the polarizer P2 and the quarter wave plates are oriented at 45o. 

The reflected light at the object and at the reference pass the quarter wave plates two 

times changing the polarization plane by 90o, and interfering at the CCD plane after 

passing the analyzer P3. The role of the polarizer P3 is to pass the light reflected from the 

sample and to block the stray light from the optics [27]. A variable aperture placed at the 

back focal (Fourier) plane of the objective lens L2 can be useful in controlling the 

angular spectrum of the object field. 
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Figure 5.3. Experimental Apparatus. RDL: ring dye laser; M1 and M2: mirrors; REF: 

reference mirror; L1, L2, L3, L4 and L5 lenses; BE: beam expander; P1, P2 and P3: 

polarizers; PBS: polarizing beamsplitter; QW’s: quarter waveplates; A: aperture; H: 

hologram plane; OBJ: object; MM: motorized micrometer; MMC: controller for MM. 

 

5.5. Results 

The attached amplitude images were obtained from a healthy excised human eye supplied 

to us by the Lions Eye Institute for Transplant & Research of Tampa FL. The holographic 

image acquisition and computation of the optical field of the macula sample are carried 

out for about 50 wavelengths in the Δλ range of 560-600 nm. Superposition of images, in 

the DIH processes described above, reveals the topographic mapping within the macular 

tissue, Figure 5.4a, and clearly delineates borders of blood vessel segments. The imaged 

surface area is 5020 x 5020 2mμ  with a physical axial range 209.75 mμΛ =  and physical 
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axial resolution 4.19z mδ μ= . Different layers are distinguishable in the cross-sectional 

images of the human macula, Figure 5.4b, 5.4c. The optical thickness between the retinal 

nerve fiber layer (NFL) and the retinal pigment epithelial layer (RPE) is about 84 mμ .  

 
 
a)    b)   c) 

 

Figure 5.4. The Reconstructed Volume of the Human Macula Sample: (a) x-y cross-

section, FOV = 5020 x 5020 2mμ ; (b) y-z cross sections at various x values, 5020 x 

209.75 2mμ , from left to right, x1, x2, and x3; (c) x-z cross sections at various y values, 

209.75 x 5020 2mμ , from top to bottom, y1, y2, and y3; Δλ: 0.560-0.600 mμ ; 

mz μδ 19.4= ; myx μδδ 6.19== ; NX= NY=256 pixels; NZ= 50 pixels. 

 

Figure 5.5a, represents the en-face reconstructed 3D structure of the optic nerve 

region with an area of 5020 x 5020 2mμ . We can identify the scleral ring (disc) diameter 

Ddisc = 1750 mμ  and the cup diameter Dcup = 660 mμ , Figure 5.5b. Our measurements 

cannot be clinically correlated with normal anatomic values as the tissue was post-

mortem and edematous, falsely enlarging the disc diameter with swelling of the 

surrounding nerve fiber layer tissue.  Vitreous papillary adhesions also had to be removed 
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with forceps from the optic nerve tissue, and any remnants laying atop the nerve tissue 

rim could have falsely enlarged our measurements. The optic nerve sample was slightly 

tilted when it was imaged, resulting in the left side of the scleral ring appearing to be 

darker than the right. The optic cup has a well distinguished shape with high reflectivity - 

depicted by brighter colors on 3D imaging. The higher reflectivity within the cup depth 

explains the higher noise in the region of the optic cup, (Figure 5.5a.). The black valley 

around the disc is a false valley due to a phase jump at the edge of the disc. 

 

 
 

 a)     b) 
 

Figure 5.5. The Reconstructed Volume of the Human Optic Nerve Sample: (a) x-y 

cross-section, FOV = 5020 x 5020 2mμ ; Z0 = 446 mμ ; Δλ: 0.563-0.605 mμ ; mz μδ 06.4= ; 

myx μδδ 6.19== ; NX= NY=256 pixels; NZ= 50 pixels; (b) cross section along the dashed 

line in Figure 5.5a; Dcup = cup diameter, Ddisc = disc diameter. 

 

Figure 5.6a, represents the en-face reconstructed optical field of the rhombus 

region from Figure 5.5a. The cross-sectional images in the y-z planes Figure 5.6b, and x-

z planes Figure 5.6c, are also shown. In practice, if one uses a finite number of 
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wavelengths, N with a uniform increment kδ  of inverse wavelengths, then the object 

image repeats itself at a beat wavelength 
kδ
π2

=Λ , with axial resolution /z Nδ = Λ . This 

occurred in the x-z cross sections, Figure 5.6c top, where the bottom of the cup depth, h2, 

is found at the top. Therefore, to find the cup depth, h1 is added to h2, where h1 (relative 

to the baseline height) and h2 are the upper and the bottom part of the cup. By using 

appropriate values of kδ  and N, the physical axial size (beat wavelength), Λ , can be 

matched to the axial range of the object, and zδ  to the desired level of physical axial 

resolution. The height of the x-z cross sections, Figure 5.6c top, represents the physical 

axial size mμ35.280=Λ  made of 50 pixels (the number of wavelengths being scanned) 

with a physical axial resolution 5.61z mδ μ= . Using this information one can quantify the 

cup depth being as h= 355.11 mμ , and the cup slope, s, of about 47o. 
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a)   b)   c) 
 

Figure 5.6. The Reconstructed Volume of the Human Optic Nerve Sample (the 

rhombus shape volume from Figure 5.5a: (a) x-y cross-section, FOV=1100 x 1100 2mμ ; 

(b) y-z cross sections at various x values, 1100 x 280.35 2mμ , from left to right, x1, x2, 

and x3; (c) x-z cross sections at various y values, 280.35 x 1100 2mμ , from top to 

bottom, y1, y2, and y3; Z = 29.7 mμ ; mμλ 595.0565.0: −Δ ; mz μδ 61.5= ; 

myx μδδ 32.4== ; NX= NY=256 pixels; NZ= 50 pixels; s = the slope; h1, h2: heights. 

 

The y-z cross section images of the reconstructed volume of the second eye optic 

nerve at various x values are shown in Figure 5.7a. The characteristics of the cross-

sectional area are: the area imaged is 4696 x 239.85 2mμ , the physical axial 

extent 239.85 mμΛ = , the reconstruction distance Z = 5049.5 mμ ; lateral resolution 18.37 

μm  (256 pixels), and physical axial resolution mz μδ 8.4= (51 pixels). Cross section (x3) 

of the intensity levels data along the dotted line is shown in Figure 5.7b, from which the 

disc diameter and the cup diameter were quantified as: Ddisc = 1750 mμ , and the cup 
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depth is about 240 mμ . The cup-shaped depression is located slightly temporal to its 

geometric center as shown in all three cross-sections  

 
 a)    b) 

 
Figure 5.7. (a) Y-Z Cross Section Images of the Reconstructed Volume of the 

Human Optic Nerve Sample (the second eye optic nerve): at various x values, 4696 x 

239.85 2mμ , from left to right, x1, x2, and x3; (b) intensity levels function of x with 

temporal, cup, and nasal picks; Z = 5049.5 mμ ; mμλ 597.0562.0: −Δ ; mz μδ 8.4= ; 

myx μδδ 37.18== ; NX= NY=256 pixels; NZ= 51 pixels; Ddisc: disc diameter; high 

intensity in the region of the cup does not correspond to physical shape (see discussion in 

the text). 

 

5.6. Conclusions 

Imaging techniques in ophthalmology are currently evolving rapidly. Histological 

resolution approaching that for in-situ imaging is the goal of many imaging techniques. 

The ideal imaging device should be a robust instrument that uses high-speed, non-
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contact, non-invasive technology, has no mechanical moving parts, and has an axial 

resolution better than 5 μm. There is no doubt that OCT, with additional extensions, has 

become one of the most advanced imaging technique in the ophthalmology area. For 

ophthalmic imaging, the light source has to be chosen as a function of the characteristics 

of the reflected spectrum. This spectrum varies with three histological parameters, RPE 

melanin, haemoglobin, and choroidal melanin [31]. The intensity decreases in the green 

region once the melanin increases and the RPE response becomes weaker. Also, the 

absorption of the ophthalmic tissue depends on haemoglobin in visible and water in 

infrared. Water absorption in the vitreous at 950 nm and above 1100 nm limits the 

scanning wavelength range of about 150 nm [13, 14]. Therefore, light sources operating 

on a centered wavelength between 800 and 850 nm are necessary to avoid absorption in 

the ocular media. The wavelength band centered on 830 nm has been employed in 

clinical OCT instruments. An ultrahigh resolution (UHR) OCT technology using a 

broadband Ti:Al2O3 laser (centered on 800 nm) at an axial resolution of 2-3 μm has been 

demonstrated for in-vivo imaging of retinal and corneal morphology [12, 16]. Other 

recent Fourier domain detection methods utilize high-speed UHR OCT imaging with a 

bandwidth of ~ 150 nm centered near ~900 nm [11, 14]. Spectral / Fourier domain 

detection (SD-OCT) utilizes high speed imaging at 1300 nm with an axial resolution of 

10 mμ  [41], and at 1060 nm with an axial resolution of 10.4 mμ  [15].  Swept source / 

Fourier (SS-OCT) domain detection for 3D volumetric imaging of the retina [13], utilizes 

a bandwidth centered at 850 nm with an axial resolution of  < 7 mμ . Optical imaging of 

tissue at a longer wavelength (1300 nm) offers deeper choroidal penetration, in spite of 
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the fact that tissue exposure is higher for wavelengths above 1000 nm. Also, the retinal 

tissue is more transparent for wavelengths in near-infrared (above 1000 nm).  

Despite these advances in the OCT optical biopsy, there is still room to make for 

improvement of OCT techniques. The results of the Advanced Imaging for Glaucoma 

Study (AIGS) indicate the SD-OCT is still in infancy [29]. A dilemma, as to why SD-

OCT has been unsuccessful compared to time-domain OCT (TD-OCT) in detecting 

glaucoma by imaging the circumpapilary retinal fiber layer (cpRNFL), constitutes a 

problem in the retina imaging technology [29]. All OCT devices are characterized by 

complicated software for image processing and registration of cross-sectional OCT 

images with a fundus image from the same OCT data set. 

Digital Interference holography (DIH) offers rapid 3D imaging with theoretically 

higher resolution than OCT, and without the need to reassemble images from scans. Our 

research has demonstrated that, in vitro, DIH can measure the dimensions of the scleral 

ring and provide a definitive answer regarding the size of the optic disc, a clinically 

important parameter that is not provided by current OCT instruments. Numerical 

focusing of holographic images can be accomplished from a single exposed hologram.  

This work is to our knowledge a novel and innovative approach to retinal 

imaging. The goal in the future is to improve DIH imaging parameters to a level 

compatible with clinical applications and to identify and address technical challenges for 

such applications. 

At this point, our scanner has to overcome the signal-to-noise ratio issue, to 

provide clinically relevant information. The scanning time is 30 s and the signal-to-noise 

ratio (SNR) is about 50 dB [23]. The imaging dynamic range or SNR will be improved to 
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about 90 dB by replacing the dye laser with a Ti:Sapphire laser (longer wavelengths), 

introducing a high-speed camera and increasing the number of holograms from 50 to 500. 

With increased speed, and resolution, DIH has the potential to provide a significant 

improvement in terms of information captured, both for the diagnosis of disease and for 

the understanding of normal histopathology and physiology. With better axial resolution 

and greater axial range, we expect to be able to extract more information about retinal 

thickness and structure.  

In vivo imaging of human eye needs to be fast enough to avoid blurring due to eye 

movement (tremors, drifts, saccades). More attention needs to be paid to scanning of 

wavelengths at high speed. Normally, the dye laser wavelength is tuned by rotating a 

birefringent filter (BRF) with a micrometer. The micrometer moves at a speed of 

~0.5mm/s, and information on the laser spectral and power behavior at high speed scan is 

not readily available. A Ti:Sapphire laser with an appropriate actuator and a sweep 

function parameterized by time is a good option that works very well with the SS – OCT 

systems. Also, a retinal tracker system for three-dimensional retinal morphology and 

function will be developed and integrated in the DIH setup. 

We plane to translate and adapt the optical bench apparatus onto a fundus camera. 

Optically, the apparatus will consist of a Michelson interferometer with fundus camera 

attached to the object arm as an optimized imaging lens for the object, i.e. the eye. Use of 

optical fibers and couplers allow flexible and compact design of the holography module. 

With the holography imaging module in place, a set of basic digital holography imaging 

experiments are to be carried out in order to establish and optimize the imaging 

characteristics of the fundus camera used as a holography camera. The reference mirror 
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will have a motorized z-translation stage, for proper matching of relative distance to the 

object (retina), and the optics will be modified to compensate for the eye’s optics in the 

object arm.  

Another challenge in ophthalmic imaging applications is to ensure that the level 

of laser radiation on the eye is not damaging to the vision. The SNR of the system needs 

to be sufficient so that a radiation level weak enough to safe can still generate good 

quality images. Once new equipment is integrated in the setup, we will carry out a set of 

measurements to calibrate the irradiance arriving at the object. The image quality, i.e. 

SNR, is to be measured as a function of the irradiance, as well as various other optical 

parameters, such as polarization, object-reference intensity ratio, and the type of object 

being imaged.  

Admittedly, limitations inherent to post-mortem cadaveric models did exist in 

regard to our ability to correlate measurements from imaging with known normal 

anatomic findings.  However, the images do illustrate the ability of DIH imaging to 

successfully depict and measure contour of ocular tissue. Our goal in imaging was not to 

replicate known measurements, but rather to illustrate the concept of the ability of DIH 

imaging to image a 3D ocular structure with adequate resolution. 

With full development of its capabilities, DIH may provide another option in 

ocular imaging, providing high resolution 3D information which could potentially aid in 

guiding the diagnosis and treatment of many ocular diseases.  
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CHAPTER 6 
 
FINGERPRINT BIOMETRY APPLICATIONS OF DIGITAL INTERFERENCE 

HOLOGRAPHY 

 

The Digital interference holography (DIH) is a multiwavelength optical technique that 

can be used to build holographically the three dimensional structure of the fingerprints. 

This chapter proposes to show how the DIH technique could be used in the field of 

forensic science as a powerful fingerprints scanner to identify and quantify Level 1 

(pattern), Level 2 (minutia points), and Level 3 (pores and ridge contours) fingerprint 

characteristics from the amplitude images. Section 6.1 reviews some of the fingerprint 

features used in the enrollment, verification, and identification phases. Section 6.2 covers 

the theory of the fingerprint imaging and object field reconstruction. Section 6.3 

discusses the experimental setup for fingerprint imaging. Samples characteristics are 

discussed in Section 6.4. Section 6.5 presents experimental results. Conclusions are 

presented in Section 6.6. 

 

6.1. Introduction  

There are three kinds of fingerprints that could be identified where they were left behind. 

They are latent, visible, and plastic prints. Latent prints are left on the surface of the 

objects and are invisible. A chemical is used to make the prints visible. Visible prints are 
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left when a finger is coated with a colored substance. Plastic prints are formed when the 

finger presses onto a soft surface such as wax, soap or putty. All these prints are called 

exemplar fingerprints when they are obtained from human fingers using scientific tests 

under supervision. The features of the fingerprints can be classified in three levels [1-7]. 

Level 1 feature refer to the pattern type, such as arch, tented arch, left loop, right loop, 

double loop, and whorl. Level 2 features are formed when the ridge flow is interrupted by 

some irregularities, known as minutiae. Examples of minutiae are bifurcation, ending, 

line-unit, line-fragment, eye, and hook. Level 3 features include other dimensional 

characteristics like pores, creases, line shape, incipient ridges, scars, and warts. Finger 

recognition is a complex process that occurs in three phases: enrollment, identification 

and verification [2]. During the enrollment phase fingerprints from different individuals 

are recorded digitally by the CCD camera. The identification process or one-to-many 

matching refers to the finding the person who committed the crime based on the matching 

of his fingerprints against an existing database of known fingerprints. The verification 

process or one-to-one matching refers to the comparison of the individual fingerprints 

against those of his/her enrolled fingerprints template. When enough similarities are 

found between three or more nearby minutiae in both claimant and enrollee fingerprints, 

then the fingerprints are said to match. This is called minutia matching. Another 

matching scheme is the correlation matching [2] performed in the frequency domain due 

to the fact that the fingerprints in the space-domain are subject to alignment errors such 

as the elasticity, different noise between claimant and enrollee images, as well as 

translational and rotational freedoms. Most of the fingerprints technologies rely on 

minutiae matching approach with higher recognition accuracy. The matching process is a 
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challenging work; usually it requires a few combined algorithms to improve the accuracy 

of the measurements. Therefore, there is still much potential for algorithmic improvement 

[8]. 

We use the multi-wavelength digital interference holography (DIH) scanner [13-

22], and fingerprints recognition to build up the three dimensional structure of the 

fingerprints and to identify and match fingerprints feature that could be used in the two 

phases, identification and verification. The wavelengths range is swept automatically and 

for specific wavelengths the hologram is recorded digitally followed by numerical 

reconstruction of the optical field. The axial resolution is a parameter that depends on the 

wavelength scanning range and is obtained by superposing all optical fields. The DIH 

scanner setup is a Michelson interferometer in off-axis reflection geometry. This work 

proposes to show how the DIH technique could be used in the field of forensic science to 

identify and quantify Level 1 (pattern), Level 2 (minutia points), and Level 3 (pores and 

ridge contours) fingerprint features. Our contribution is as follows: a new optical scanner, 

DIH, is introduced in the area of the fingerprints recognition; a database of fingerprints is 

created for each enrolled subject using different print materials; the fingerprint 3D images 

along with minutiae extracting and minutiae matching are presented; using this technique 

we were able to obtain information not only about the ridges, but also the depth and the 

width of the ridges; we built a three dimensional structure of the fingerprints templates 

with microns size axial resolution.  

6.2. Theory 

The diffraction is described by two mathematical methods. In the transfer function 

method, the object field at the observation plane is the inverse Fourier transform of the 
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Fourier transform of the object field at the aperture multiplied by the free-space transfer 

function. The second method is based on calculating the spatial distribution of the object 

field at the observation plane as an integral over individual responses of each point of the 

aperture through the point-spread function of the system. Function of the type of wavelet 

arriving at the observation plane, the point-spread function can take various mathematical 

expressions. The below developed theory is based on the Fourier approach.  

 Suppose an object is illuminated by a laser beam of wavelength λ . Considering 

the actual wave-front amplitude ( )OBJO r , the point OBJr  on the object scatters the light into 

a Huygens wavelet, ( ) exp( )OBJ OBJO r ik r r−  where the object function ( )OBJO r  is 

proportional to the amplitude and phase of the wavelet scattered or emitted by object 

points. For an extended object, the field at r , is found by linearly superposing the the 

reconstructed optical fields due to the secondary wavelets inside of the object and it has 

the expression,  

3( ) ( ) exp( | |)OBJ OBJ OBJU r O r ik r r d r−∫∼   (6.1) 

where the integral is over the object volume. In holography, the amplitude and the phase 

of the object field is recorded at the hologram plane, ( , , 0)h h hx y z =  as 

(HN ( ), ,N N N NH x y λ , for each Nth wavelength. The total optical field as a result of the 

superposition of all N 3D-arrays results in: 
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If a large number of wavelengths is used with uniform increment (1/ )λΔ , the 

object image repeats itself at the beat wavelength (axial size), [ ] 1(1/ )λ −Λ = Δ , having an 

axial resolution of /z Nδ = Λ .  

 We perform the reconstruction of the optical field using the angular spectrum 

algorithm. The advantages of the angular spectrum method over more commonly used 

Fresnel transformation (or Huygens convolution) method, are as follow: Firstly, the 

Fresnel transformation is accurate only when small angles of diffraction are involved 

[22]. The angular spectrum method and the Fresnel approximation are equivalent within 

the small angles approximation called paraxial approximation. Secondly, the noise and 

frequency components in the Fourier space can be easily controlled by eliminating 

unwanted frequencies. Thirdly, no minimum reconstruction distance is necessary as in 

the case of the Fresnel approximation [17]. Once the angular spectrum at z = 0 is 

calculated by a Fourier transform, the field at any other z-plane can be calculated with 

just one more Fourier transform. 

 

6.3. Digital Interference Holography Fingerprint Scanner Setup 

A schematic diagram of the DIH scanner setup is presented in Figure 6.1. We used a 

Michelson interferometer in a backscattering geometry with a ring dye laser source, 

tunable over a range of 563 nm to 615 nm with an output power of up to 500 mW. The 

object (fingerprint sample) is illuminated by a collimated beam as follow: The laser 

output, after being spatial-filtered, collimated and linearly polarized, is split into sample 

and reference waves at polarized beam splitter, PBS. The focusing lens, L2, focuses the 

laser on the back focus of the objective lens L3, and L5 (C-mount lenses) forms the 
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image at infinity. The reference mirror is at the optical conjugate of the plane H through 

the matching objective lens L4. A digital CCD camera (8 bit, 30 frames per second, 780 x 

640 pixels with 9 μm pitch) acquires the holographic interference between the plane 

reference wave and the object wave that has propagated (diffracted) over a distance z 

from the object plane. We call z the reconstruction distance due to the fact the object can 

be numerically brought into focus by adjusting the distance, z, without moving the object 

or the CCD camera. The fingerprint on a glass surface induces differences in the optical 

polarization or reflection, or both, between the clean part of the surface and that bearing 

the print [10]. The polarization optics – polarizers P1, P2, analyzer P3, quarter wave 

plates, and polarizing beam splitter – are used to continuously adjust the overall laser 

power in the experimental setup and inside the interferometer. A variable aperture placed 

at the back focal (Fourier) plane of the objective lens, L3, can be useful in controlling the 

angular spectrum of the object field. Samples are attached to a microscope slide and 

mounted on a lens holder.  
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Figure 6.1. Digital Interference Holography Fingerprint Scanner Setup. RDL: ring 

dye laser; M’s: mirrors; SF: spatial filter and expander; L1, L2: lenses with focal length 

of 25 cm; L3, L4: lenses with focal length of 15 cm; L5: C-mount lens set to infinity 

focus;; PBS: polarizing beamsplitter; QW’s: quarter waveplates; A: aperture; H: 

hologram plane; OBJ: object (visible, clay, cement); REF: reference mirror; MM: 

motorized micrometer; MMC: controller for MM. 

 

6.4. Sample Characteristics  

For the purpose of evaluating our DIH system, in the enrolment phase, we created two 

sets of image databases, DB1 with field-of-view (FOV) 5.0 x 5.0 mm2 and DB2 with 

FOV 10.4 x 10.4 mm2. Each database contains image data from a) visible fingerprint, b) 

the clay fingerprint, c) the plastic print on a mixture of clay and silver enamel, d) the 

plastic print on clay (the thumb finger was coated with a lightly layer of enamel before 

pressing into the clay), e) the plastic clay print only; and f) the plastic cement print of 
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thumb fingerprint from three subjects A, B, and C, with 5 impressions for each subject: 

visible fingerprints on glass by using silver enamel Figure 6.2a (subject A), and Figure 

6.2b (subject B); the plastic print on a mixture of clay and silver enamel Figure 6.2c, the 

plastic print on clay (the thumb finger was coated with a light layer of  enamel before 

pressing into the clay), Figure 6.2d; the  plastic clay print only Figure 6.2e; and the 

plastic cement print Figure 6.2f. We tested different kinds of household materials. One 

set of prints was made with Crayola Solid White Model Magic FUSION mixed with 

TESTORS Gloss Enamel Craft Paint, 1180 Steel Acier Figure 6.2c, to make the imprints 

more reflective. The two materials become sticky if too much enamel is added resulting 

not good fingerprint impressions. The other set of prints was made with Van Aken 

Claytoon Modeling Clay only. Usually the plastic fingerprints are lifted using different 

impression materials. To obtain the positive fingerprints (real), a few drops of Duco 

(ITW Devcon Corporation) household cement were poured at the top of the negative 

(reverse of real print) clay print [11, 12]. This kind of cement dries hard and clear, 

making the fingerprint features look natural. After a few hours, the clay was removed 

from below the cement print surface, and extra work has been done to clean the 

fingerprints positive mold of the impurity. Air bubbles are inevitable since the clay does 

entrap air inside of it, Figure 6.2f. In order to affix the fingerprints samples in the optical 

setup a small scanning screen made with a microscope slide attached to a lens holder, 

Figure 6.1. All clay print samples in different combinations and the cement sample were 

fixed on microscope slides facing the CCD camera. 
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Figure 6.2. Fingerprints Samples: the enamel visible fingerprints, a) subject A; b) 

subject B; the clay fingerprints, c) the plastic print on a mixture of clay and silver enamel, 

d) the plastic print on clay (the thumb finger was coated with a lightly layer of enamel 

before pressing into the clay), e) the plastic clay print only; and f) the plastic cement 

print. 

 

6.5. Results  

When a finger tip coated with enamel touches the microscope cover slip, a visible pattern 

of ridges and valley is left behind, Figure 6.3a, 6.3d. From the experimental setup, one 

can notice the collimated laser beam illuminates the microscope cover glass at a right 

angle, and the CCD camera plane is parallel to the object plane, therefore the light 

reflected from the glass only (valleys) is bright since the specular reflection happens at a 
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right angle. The light reflected from the enamel prints (ridges) represents a combination 

of specular and diffuse light, so the ridges prints appear darker. We can notice a doubled-

loop fingerprints pattern for subject A, with a few examples of bifurcation points A1’s 

and ending points A2’s in both direct image Figure 6.3a, and reconstructed image using 

DIH, Figure 6.3b. The quality of the reconstruction of the visible fingerprints using DIH 

is high since the flow of the ridges follows the same pattern on both the direct and 

reconstructed prints. Moreover, the closed and open pores A3’s, located on the ridges are 

very well distinguishable in both images. Taking into consideration the lateral resolution 

in the x or y direction is δx= δy= 40.56 µm with the same number of pixels, Nx = Ny 

=256, the width of the fingerprint ridge to which the arrow A4 is pointing to is 212 mμ  

for subject A, in Figure 6.3b, and 454 mμ  (arrow B4) for subject B in Figure 6.3d. In the 

identification or verification stages, the examiner also determines the orientation of the 

imprint left by the fingerprint ridges. Here, using the 3D representation of the 

reconstructed optical field by the DIH, Figure 6.3c, an examiner could obtain significant 

information about the orientation of the imprint left by the fingerprint ridges under 

different views. As a comparison, a direct image of subject B, with a right loop pattern, 

bifurcation point B1, ending point B2, and pores B3, is shown in the Figure 6.3d. 

Therefore, based on all this information, DIH can act as an optical lifting tool in the area 

of visible fingerprint recognition. 
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a)   b)  c)   d) 

Figure 6.3. Enamel Visible Fingerprints, ridges (dark), valley (bright): a) x-y direct 

image data, subject A; b) x-y reconstructed optical field, subject A; c) the reconstructed 

and rotated (Euler angles: θ =4.32o, φ= 234o , Ψ = 0.23o) optical field , subject A; d) 

direct image data, subject B; FOV =10.383 x 10.383 mm2 , δx= δy= 40.56 µm; Nx = Ny 

=256 pixels; A’s, B’s represent Level 2 and Level 3 fingerprint characteristics.  

 

Fingerprints left at a crime scene do not always present good quality. This is the 

case of the sample in Figure 6.2c, where the core part of the fingerprint is not shown. 

This is a fingerprint pattern with high reflectivity, similar to a silver coin. Using DIH, we 

can reconstruct the 3D fingerprint profile of this sample, the plastic print on a mixture of 

clay and silver enamel Figure 6.4. The holographic image acquisition and computation of 

the optical field are carried out for each of 50 wavelengths in the range from 560 nm to 

600 nm. Superposition of images, in the DIH process described above, reveals the wavy 

features of the fingerprints pattern. The imaged surface area is about 5.0 x 5.0 mm2. The 

axial range is 210.5 mμΛ = , the lateral resolution 19.6x y mδ δ μ= = , and 

4.205z mδ μ= . A valley/ridge in a negative clay print corresponds to a ridge/valley in a 

positive clay print. From the fingerprint topography in Figure 6.4b, 6.4c, one can quantify 

the height of the fingerprint ridges from valley to top and the width of the fingerprint 
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ridges from valley to valley, as 80.5h mμ=  (about 19 pixels of size μm), and 

764w mμ=  respectively (about 39 pixels of size 19.6 μm). 

 

 

a)   b)    c)  

Figure 6.4. The Reconstructed Volume of the Plastic Print on a Mixture of Clay and 

Silver Enamel Sample: (a) x–y cross-section, 5017 × 5017 μm2; (b) y–z cross sections at 

various x values, 210.5 × 5017 μm2, from left to right, x1, x2 and x3;  (c) x–z cross 

sections at various y values, 5017 × 210.5 μm2, from top to bottom, y1, y2 and y3; Δλ : 

0.560-0.600 µm; Z= 743 µm; Λ= 210.5 µm; δx= δy =19.6 µm, δz = 4.205µm, Nx = Ny 

=256 pixels, Nz = 50 pixels. 

 

The next example is a small area sample, FOV~5.0 x 5.0 mm2, the thumb finger 

of the subject C was coated with a light layer of liquid enamel and pressed against the 

clay mold to make the prints. In the en-face image, Figure 6.5a, there is an important 

Level 2 (minutiae) feature, called crossover, which is a short ridge that runs between two 

parallel ridges. The end points of this feature are P1 and P2. The distance between the two 

points along the x axis is 767 mμ , and 1505 mμ  along the y axis respectively. In the 

tomographic images, Figure 6.5b, 6.5c, the crests of the ridges (the actual valleys of the 



 106

fingerprint) are shown. The two end points of the crossover feature are also visible in the 

tomographic images. The dark gaps between crests correspond to the actual ridges of the 

fingerprint and they do not reflect the light since the silver enamel is not more present 

there.  

 

 

a)   b)   c) 

Figure 6.5. The Reconstructed Volume of the Plastic Print on Clay (finger coated 

with enamel before pressing into the clay) sample (a) x–y cross-section, 5017 × 5017 

μm2; (b) y–z cross sections at various x values, 209.5 × 5017 μm2, from left to right, x1, 

x2 and x3; (c) x–z cross sections at various y values, 5017 × 209.5 μm2, from top to 

bottom, y1, y2 and y3; Δλ : 0.560-0.600 µm; Z= 743 µm; Λ= 209.5 µm; δx= δy =19.6 

µm, δz = 4.19 µm, Nx = Ny =256 pixels, Nz = 50 pixels; P’s represent Level 2 

fingerprint characteristics.  

 

The reconstructed optical field with an area of 10.4 x 10.4 mm2, of the core part 

of the sample in Figure 6.2d, is shown in Figure 6.6a. This case is similar to the previous 

sample; the only difference is a double FOV. Because of this, the fingerprint ridges 

appear closer to each other in this case and the gaps between these are not seen in the 
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tomographic images, Figure 6.6b, 6.6c. The gaps are visible when the images are 

magnified. A closer analysis gives reasonable comparison and a point of view as to match 

a visible print with a 3D print. The valleys pattern and the valleys contour are similar to 

the doubled-loop fingerprints pattern and the contour of the ridges in the silver enamel 

visible prints, Figure 6.3a, 6.3b. During the reconstruction process, we observe the 

features are preserved in spite of the noise present in any optical setup and from various 

sample conditions. In the fingerprint verification or identification phases, fingerprints are 

rejected if they do not have the same flow of ridges, direction and location in the two 

situations. After all these basic similarities are resolved, we need to see where the valley 

and ridge widths match. The valley A5, with a width of 404 mμ  in Figure 6.3a is 

approximately equal to the width of the ridge A5 in Figure 6.6a, which is 448 mμ . The 

second one is wider since the width of the ridge of a plastic print is measured from valley 

to valley and not from one edge to the other edge as in the case of the silver enamel 

visible fingerprints. Moreover the height of the ridge R1 in Figure 6.6b is 38.64 mμ  and 

the width of the same ridge is 677 mμ .  
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a)   b)   c)  

Figure 6.6. The Reconstructed Volume of the Plastic Print on Clay (finger coated 

with enamel before pressing into the clay) sample: (a) x–y cross-section, 10 × 10 mm2; 

(b) y–z cross sections at various x values, 212.5 × 10383 μm2, from left to right, x1, x2 

and x3; (c) x–z cross sections at various y values, 10383 × 212.5 μm2, from top to 

bottom, y1, y2 and y3; Δλ : 0.563-0.603 µm; Z= 8911 µm; Λ= 212.5 µm; δx= δy =40.56 

mm, δz = 8.497 mm, Nx = Ny =256 pixels, Nz = 50 pixels; A5 and R5 are ridges. 

 

Once the plastic prints are found at the scene of the crime their ridges and furrows 

must be preserved. A solution to lift prints from a rough surface is to use casting 

materials that fill in the whole area and not break up fingerprint pattern when the whole 

print is lifted. A few casting materials, used to record impression marks, are: liquid 

silicone rubber with catalyst, DuroCast casting putty, TexturLift liquid silicone, and 

common materials used for dental impressions. Usually, before applying the casting 

materials the plastic prints should first be dusted with magnetic powder that contains 

ferromagnetic particles to increase the contrast of the prints. Here, we used Duco 

household cement, due to the fact that it was cheaper than the other materials, without 

any magnetic powder applied to enhance the contrast. As an example, Figure 6.7 
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represents the reconstructed volume of the plastic cement print sample; the en-face 

image, Figure 6.7a, with an area of 10.4 × 10.4 μm2 , and the tomographic images, Figure 

6.7b, 6.7c with areas of 264 × 10383 μm2 (10383 × 264 μm2). The axial resolution for 

this sample is δz = 5.26 μm and the lateral resolution is δx= δy =40.56 µm. Sometimes, 

trying to image the core part of a fingerprint is not simple since the details are very small. 

The fingerprint surface is clearly distinguishable but the shape of the ridges is barely 

seen; it means that a better resolution than 5.26 mμ  is a need to reveal the wavy pattern 

of prints in the tomographic images or a different casting material should be used.  

 

 

a)    b) 

Figure 6.7. The Reconstructed Volume of the Plastic Cement Print Sample: (a) x–y 

cross-section, 10.383 × 10.383 mm2; (b) y–z cross sections at various x values, 264 × 

10383 μm2; from left to right, x1, x2 and x3; Δλ : 0.561-0.593 µm; Z= 2975 µm; Λ= 264 

μm; δx= δy =40.56 µm, δz = 5.26 μm, Nx = Ny =256 pixels, Nz = 50 pixels. 

 

In Figure 6.8a, a direct (non-holographic) image of a patent print is shown, where 

a finger tip coated with enamel is lightly pressed on a slide glass, leaving a visible, print. 
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The amplitude image Figure 6.8b clearly reproduces the double loop pattern of this 

finger. Such two-dimensional image of patent prints can be obtained using conventional 

imaging methods and holography does not offer particular advantages. Holographic 

phase images, on the other hand, can provide additional information on the third 

dimension. Figure 6.8c is a phase image obtained from the same hologram used in Figure 

6.8b. Although there is some hint of the loop structure as well as some low frequency 

variation of the enamel thickness over the field of view, the film is too thick and the 

phase map is severely wrapped, resulting in overall very noisy pattern. Another hologram 

is acquired using a slightly different wavelength, 577.71 nm vs. 580.17 nm, and its phase 

image is shown in Figure 6.8d, which is just as noisy. The two phase images are now 

combined using the optical phase unwrapping procedure described above, and the result 

is shown in Figure 6.8e. The beat or synthetic wavelength is then Λ=12136 mμ , which is 

the full z-scale or color scale of Figure 6.8e. The fact that there is little phase-wrapping in 

Figure 6.8e implies that the enamel thickness is about 100 mμ . These images include 

bifurcation points (A1), end points (A2), as well as open pores (A3), and the ridge-to-

ridge width is measured to be about 212 mμ . 
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Figure 6.8. Latent Fingerprints. Optical phase unwrapping of fingerprint images by 

two-wavelength holographic phase microscopy: a) direct image of patent fingerprint made 

with lightly enamel-coated finger; b) holographic amplitude image; c) and d) phase images 

from two holograms made with wavelengths 577.71 nm and 580.17 nm; e) optically phase-

unwrapped image by combination of c) and d). FOV is and the gray (color) scale of e) 

corresponds to 136 mμ  of optical thickness range. 

 

6.6. Conclusions 

To summarize, a new non-invasive optical scanner, DIH, was successfully introduced to 

forensic science, more precisely in the area of fingerprints recognition. The three-

dimensional imaging of fingerprints and also their role in identification and verification 

systems were demonstrated. The selection of the optimum casting materials depends on 

many variable, including: (1) The material has to be soft enough to not stress the ridges 

by pressing the finger onto the clay; (2) It has to set up in a short period of time; (3) It 

does not shrink or expand when it sets up; and (4) The casting materials fill in the entire 

area and does not break up fingerprint pattern when the whole print is lift. To obtain 

qualitative fingerprints a few mold (print) and casting materials should be tested to see 

the effectiveness of the materials. We were able to obtain 2D and 3D enrollee fingerprint 

structures. Various fingerprint characteristics, Level 1 (pattern), Level 2 (minutia points), 
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and Level 3 (pores and ridge contours) were identified. Also the height and the width of 

the ridges were quantified with µm axial resolution (~ mμ5 ). In order to improve this 

method, we will replace the ring dye laser with a Ti:Saphire laser to increase the tunable 

wavelength range and subsequently increase the axial resolution below 5 mμ , and try 

different casting materials. Advanced commercial fingerprints systems, live-scan sensors, 

reveal the skin layers using a multiwavelength technique (TIR), [9]. Our future work will 

concentrate on building up the 3D structure of the live-scan fingerprints using our optical 

scanner based on the DIH technique. Once the real fingerprints features are stored as 

digital information in the computer, the real and the casting material fingerprints could be 

used to map and match identical features. By doing live-scan fingerprints we will also 

have access to the 3D information of the pores not captured in the print or casting 

materials. 
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CHAPTER 7 

THREE-DIMENSIONAL SPRING CONSTANTS OF AN OPTICAL TRAP 

MEASURED BY DIGITAL GABOR HOLOGRAPHY 

 
This chapter presents experimental results on quantitative mapping of three-dimensional 

optical force acting on an optically trapped co-polyester particle in a three-dimensional 

parabolic potential by using digital Gabor holography. A brief review of the optical 

trapping technologies is presented in Section 7.1. The background of the optical trapping 

process, the digital Gabor holography theory, calibration methods, and the motion 

tracking algorithm are described in Section 7.2. In Section 7.3 the sample characteristics 

and the experimental apparatus are presented. The results are presented in Section 7.4. 

Finally, in Section 7.5 conclusions are made. 

 

7. 1. Introduction  

Quantitative studies of physical and biological processes and precise non-contact 

manipulation of nanometer/micrometer trapped objects can be effectuated with 

nanometer accuracy due to the development of optical tweezers. A three-dimensional 

gradient trap is produced at the focus position of a high NA microscope objective. 

Particles are trapped axially and laterally due to the gradient force. Particles are confined 

in a potential well and the trap acts as a harmonic spring. The elastic constant or the 

stiffness along any axis is determined from the particle displacements in time along each 
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specific axis. Optical tweezers have been used to trap dielectric spheres, living cells, 

organelles, viruses, and bacteria. The main use for optical trap is the manipulation of 

biological structures to study of the molecular motors and the physical properties of DNA 

[1, 2]. Optical sorting tweezers use an optical lattice to sort cells by size and by refractive 

index [3, 4]. The evanescent field and more recently surface plasmon waves propel 

microparticles along their propagating path [5, 6]. Optofluidics is a joint technology 

between microfluidics and micro-photonics. Optical control of the microfluidic elements 

using optical tweezers was also reported [7]. Another application of optical trapping 

techniques includes integrated lab-on-a-chip technologies where optical force landscapes 

are highly desirable to manipulate multiple microparticles in parallel [8].  

Several optical trap geometries have been reported [1 - 14]. Cells and colloidal 

particles have been manipulated in recent years using single or multiple optical beam 

traps. The first counter – propagating beam optical trap experiment was introduced by 

Ashkin in 1970 [9]. Optical scattering forces and gradient forces were obtained on 

submicron silica spheres. The optical fountain is the first optical trapping in three 

dimensions [10]. It uses gravity against the "scattering" force due to the beam pushing the 

particle. The single beam gradient trap [11] is considered the most accurate trap in 3D. 

As with elastic forces, the optical restoring force is proportional to the particle 

displacement. A stiffness of 0.2 pN/nm was demonstrated for a laser power of 50 mW.  

There are two main advantages of using holography in combination with optical 

tweezers [12-14] instead of quadrant photodetector detectors (QPD). Firstly, in 

holography the entire 3D structure is reconstructed from a single hologram. It means the 

3D position of a particle is also encrypted in a hologram. Recording many holograms in 
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time we can track the 4D particle position with nanometer precision. The quadrant 

photodetector detector (QPD) cannot yield the three-dimensional information of the 

particle position but is favored due to the high recording speed. Video-imaging of the the 

particle requires high speed CCD camera. Secondly, a laser beam sent into a hologram is 

divided into a myriad of sub-beams (HOT – holographic optical tweezers), which can 

independently suspend and manipulate numerous tiny objects for possible transportation, 

mixing or reacting. Movies of ensembles of microspheres moved into patterns and set to 

spinning by holographically sculpted light fields were also demonstrated [12, 13]. 

Another factor that has to be taken in consideration in building optical tweezers is 

the drift of center of mass of particle. It is difficult to isolate the sample from the 

environmental and instrumental disturbances to observe the pristine particle motion [22, 

25]. The drift frequency is lower than the optically trapped particle motion frequency. 

Also, this noise is a smooth function of time, independent of the data. The low frequency 

data components may be excluded by either applying a high pass-filter [24] or by fitting 

with a smooth curve to be used as a local baseline [25]. 

Thus, we report the three-dimensional sensing and identification of trapped co-

polyester particles of 9.6 mμ  diameter, trapped in ethylene glycol, using digital Gabor 

holographic microscopy, with a precision of 1 nm in the z direction and 10 nm along the 

x and y directions. Holograms were recorded by an IMAQ USB camera at 10 fps for 

various power values of the trapping laser beam. High resolution complex -valued images 

of the particles are numerically reconstructed along the optical axis from the holograms 

using the angular spectrum method [15 – 17]. Three-dimensional position tracking 

software was developed to compute reconstructions from holograms using CUDA/C and 
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a graphics processing unit (GPU), the GeForce 8800 GT. Using the object displacements 

we calculated the stiffness of the optical trap by two calibration methods: equipartition 

theory, and Boltzmann statistics. The results confirm the linear relationship between the 

stiffness and the trapping laser power. 

 We calculated the optical force constants in a three-dimensional parabolic 

potential model. The results confirm the linear relationship between the stiffness and the 

trapping laser power. The values of the spring constants of the radiation force, in the axial 

(z) direction is different from (and weaker than) the transverse (x) and (y). The average 

values of the spring constants are: the spring constant along x axis 67.6*10 /kx N m−= , 

the spring constant along y axis 64.8*10 /ky N m−= , and the spring constant along z  

axis 75.0*10 /kz N m−= . 

 Software to visualize, record and reconstruct particle positions is written in 

National Instruments’ LabView, Matlab and the NVidia CUDA environment. 

 

7. 2. Theory  

7. 2.1. Principle of Digital Gabor Holography 

The fundamental setup of a digital holography system is the in-line configuration. The 

digital in-line, or digital Gabor, holography (DGH) is a 3D imaging technique in which a 

hologram is formed from interference of the original non-diffracted beam with a 

component that is diffracted by the object in its path.  Information for both virtual and 

real images is situated in-line along the same axis; therefore, the focused image of either 

is polluted by its defocused twin. This is one of the drawbacks of using DGH. For the 
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purpose of tracking particle positions, however, DGH is a particularly simple yet 

effective solution. 

As indicated here by Equation (7.1), the intensity of the interference pattern 

recorded by the CCD may be decomposed into four terms. The first two appear as zero-

order background and are approximately removed by subtracting the average intensity of 

the entire image from each pixel. The third and forth terms represent the two conjugate 

real and virtual images. 

2 2 2( , ) ( , ) ( , ) ( , ) ( , ) ( , ) *( , ) *( , ) ( , )h x y O x y R x y O x y R x y O x y R x y O x y R x y= + = + + +  (7.1) 

 The recorded image ),( yxh contains information about both the amplitude and 

phase of the object beam. This makes it possible to reconstruct the image from the 

hologram, and we use the angular spectrum method. The Fourier transform of Equation 

(7.1). is calculated to obtain the spectrum in the object plane, 0 ( , )x yA k k . After that, the 

spectrum is propagated in the frequency domain to any desired distance along the optical 

axis ( z ), and is expressed as: 

0( , , ) ( , )exp( )x y x y zA k k z A k k ik z=     (7.2) 

Taking the inverse Fourier transform, we obtain the reconstructed object wavefront, 

1( , , ) { ( , ) [ ( , ; )]}x yE x y z A k k h x y z−= ⋅F F .    (7.3) 

where 2 2 2( , ; ) exp( )
2
ikh x y z ik x y z

zπ
= − + +  is the Huygens PSF. Breaking the 

reconstructed complex field into its polar components we get  

( , , ) ( , , ) exp[ ( , , )]E x y z E x y z i x y zφ=     (7.4) 
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where ( , , )E x y z , and ( , , )x y zφ represent the reconstructed object wavefront amplitude 

and phase at .r In this way, we have access to both the amplitude and the phase 

information.  However, in this experiment we use only the amplitude information.  

 

7. 2.2 Principle of Optical Trapping 

Since the size of the particles used in this experiment is 9.6d mμ=  and the laser trapping 

wavelength is 0.532 mλ μ= , the scattering of light by particles is described by the Mie 

theory ( d λ> ) [18]. Also, the trapping position is determinable by analysis of reflected 

or refracted light from the particles. The optical trapping forces acting on particles are 

radiation pressure forces in two forms: scattering (external) and gradient (internal) forces. 

The scattering force points away from the light source and occurs when photons reflect 

from the particle. The gradient force is directed toward the focus of the laser beam, as can 

be seen by conserving momentum when a photon is refracted twice through a sphere. 

When the gradient force in the region beyond the focus is greater than the scattering 

force, trapping is stable [11]. The total force acting on the particle has the expression: 

{ 2 ( )

0

[1 cos 2 ] sin 2 n i a nb
tot s g

n

nPF F iF R iR T R e
c

θ θ
∞

+

=

⎧ ⎫= + = + + −⎨ ⎬
⎩ ⎭

∑   (7.5) 

where, sF , and gF  are the scattering force and the gradient force. The expressions for the 

two forces are: 
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In the two equations:, n is the refractive index of the surrounding medium, P is the laser 

beam power, c is the speed of light, R is the reflectance of light at the surface of the 

particle, T is the transmittance of light, θ  is the angle of incidence, and rθ  is the angle of 

refraction. The trapping force is: ( )nPF Q
c

= , where Q is the trapping efficiency, nP
c

 is 

the incident momentum per second of a ray of power P in a medium of index of 

refraction n. As a conclusion, the fluctuations of an optically trapped particles depends on 

its size, the temperature and the viscosity of the immersed medium, the numerical 

aperture of the focusing beam, and the laser power. 

 

7. 2.3 Force Calibration Methods 

Calibration of the optical trap is necessary to determine the force acting on a micro/nano 

size object at a given position. An optically trapped particle, whose inertia is neglected, 

behaves as a damped harmonic oscillator. The linear equation of motion of a trapped 

particle in a harmonic potential is given by the reduced Langevin equation [27]: 

[ ( ) ( )] ( )trap thermalx k x t x t F tγ
•

+ − =    (7.9) 

where first term, xγ
•

, represents the is the drag force, which is proportional to the 

velocity of the bead relative to a fixed position, second term, [ ( ) ( )]trapk x t x t− , represents 

the optical force, and the third term, ( )thermalF t , represents random kinetic agitation, ( )x t is 

the particle position , ( )trapx t is the trap position, 6 aγ πη=  is the Stokes drag coefficient, 
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η is the dynamic fluid viscosity (here the medium is ethylene glycol), a is the radius of 

the particle, and k is the stiffness of the optical trap which is proportional to the trapping 

laser power. Since photon-particle interactions result in an effective restoring force of 

F kx= − , it is customary to describe trap behavior with the spring constant k , to be 

determined. In three dimensions, there are three spring constants to be found ( , ,x y zk k k ), 

expected to have lateral symmetry ( x yk k≈ ) with weaker strength along the optical axis 

( z xk k< ). 

The optical trap calibration methods described below involve observation of the 

particle’s Brownian motion within the harmonic potential by measurement of 

displacement ( )r t . Particles undergoing Brownian motion are characterized by Boltzmann 

energy Bk T , where Bk  is the Boltzmann constant and T is the temperature of medium in 

Kelvin. The first calibration method uses the equipartition analysis of the form: 

21 1 1 var( )
2 2 2B i ik T k r k r= 〈Δ 〉 =     (7.10) 

By measuring the variance var( )r of the particle displacements ( )r t  for a known medium 

temperature, one can find the trap stiffness
var( )

B
i

k Tk
r

= , , ,i x y z= . 

The second method is based on the Boltzmann statistics, with the probability 

distribution of the particle displacements of the form: 

( )

( ) B

E r
k T

iP r N e
−

=      (7.11) 

where ( )E r is the potential energy along the thi –axis and iN  are normalization constants. 

The parabolic potentials ( )E r  are obtained in two ways: first way is to find the ( ) fitP r  
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values by fitting the probability distribution with a Gaussian function, Figure 7.1a (red), 

after that the potential energy ( )E r  in Bk T  is written as ( ) [ln( ( ) ) ln( )]fit iE r P r N= −  

which represents the parabola shape from Figure 7.1b. The second way to obtain the 

potential energy is to write the energy as 2( ) / 2iE r k r= . The energy is known if we also 

have information about the spring constant ik . We can use the spring constant values 

from the equipartition theorem but if we want to use the Boltzmann statistics only, the 

spring constant can be obtained by fitting a parabola to the experimental data, ( )E r  (not 

in Bk T ), This implies the spring constant 2i Bk ak T= , where a is the coefficient of 2r  

from the parabolic fit of [ln( ) ln( ( ))]Bk T N P r− , and has the form: 1 ( )ln
var( ) i

P ra
r N

⎡ ⎤
= − ⎢ ⎥

⎣ ⎦
. 

 

a)     b) 

Figure 7.1. a) Particle Displacements Histogram, along y direction, frequency or 

counts (blue), starting Gaussian distribution (green), and ending Gaussian distribution 

(red); b) The potential energy in Bk T , derived from the probability distribution from 

Figure 7.1a. 
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7. 2.4. Computational System for Motion Tracking 

The angular spectrum requires two Fourier transforms once the field is known at the 

hologram plane, one forward FFT to switch to the frequency space and one inverse FFT 

to return to the space domain obtain after the spectrum propagation to the object plane. 

Using a Pentium IV CPU, the time required to reconstruct 1000 holograms of 150 x 150 

pixels is 100 seconds. GPGPU (General-purpose on graphics processing unit) 

computation with a CUDA (Compute Unified Device Architecture) based on C-like 

language allows numerical manipulation of data using a GPU (graphical processing unit) 

faster than CPU when big grid data arrays are involved. The GPU multi-parallel 

processors perform operations at 32-bit precision which make it highly useful for large 

data volume processing. Holograms are stored in the computer (CPU) and processed at a 

later time by the GPU. The GPU is a GeForce 8800 with 112 stream processors, memory 

of 512 Mbytes, and GPU clock of 1500 MHz, memory clock of 900 MHz. Holograms 

stored on the CPU are called by the CUDA functions and sent to the GPU memory. 

While there, the terms of Equation (7.3) are processed by the GPU chip. The 

reconstructed amplitude images and consequently the reconstructed (x,y,z) particle 

position of each hologram is transferred to the CPU. 

 

7. 2. 5. Centroid Position Identification Algorithm 

Single particle tracking algorithms usually are useful for motion tracking of objects of 

varying sizes such as molecules, biological cells, subcellular components, and 

microbeads. Three-dimensional tracking confers a problem since the lateral and axial 

resolution is not equivalent for the x, y, z axis. The center of mass does not have a 
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significant shift in the z-axis as it is in the x, y axis. Example of tracking algorithms are 

center-of-mass (centroid), cross-correlation, sum-absolute difference, and directly fitting 

Gaussian curves to the intensity profile [26]. Using digital Gabor holography, the best 

estimate of the z position is found for the amplitude maximum of the diffracted optical 

field, Figure 7.2. We recorded 1000 holograms and using GPGPU technology the 

reconstructed position (x, y, z) is determined for each of the reconstructed optical field. 

The particle is focused where the amplitude of the optical field, ( , , )A x y z , is maximized, 

which is the pick in the Figure 7.2. If the axial range is zΔ  and we desire a precision of 

zδ , set of M z zδ= Δ  equally spaced axial positions are examined. As an example, the 

reconstruction distance is 3.5 mμ  and 1000M = , it means 3.5z nmδ = . 
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Figure 7.2. Centroid Position Identification. 

 

Also, the center of the particle oc (x, y)  is determined using a weighted average, 

,
,

0

,

( , ) ( , )
( , )

( , )

i j i j
i j

i j

A i j c x y
c x y

A i j
=

∑
∑

.    (7.12) 
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where the ( , )A i j  is the amplitude of each pixel and , ( , )i j i jc x y is the center of each pixel 

in the FOV. Thus, the centroid is the weighted average of the pixels by intensity. 

Nanometer precision is also obtained in the x, y directions due to the amplitude weighting 

and only fractional pixel lateral motion, noise and edge effects are negligible. 

 

7. 3. Experimental Setup 

Our sample was co-polyester particles of diameter 9.6 mμ  from Duke Scientific 

Corporation with a 20% coefficient of variation. Particles were suspended in ethylene 

glycol with viscosity 20.0161 Nm/sη = . A custom-made sample chamber, Figure 7.3, 

consists of a microscope slide (the bottom), under a cover slip, spaced apart in z by parts 

from another cover slip, and sealed with glue. 

 

 

Figure 7.3. Optical Tweezers Sample Chamber; a) chamber made of microscope 

slide and parts of cover slip; b) chamber filled with particles immersed in ethylene glycol 

and covered by a cover slip. 

 

 A schematic of the experimental apparatus is shown in Figure 7.4. The setup 

consists of two arms. The digital Gabor holography arm is utilized for 

illumination/imaging and for three-dimensional position tracking. The trap arm is utilized 
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to trap the particle at the focus position of the high NA lens, MO2. Each of the two arms 

will be described in turn below.  

 

 

Figure 7.4. Optical Tweezers and Digital Gabor Holography Microscope; a) CCD, 

charged-coupled device camera, L’s lenses, MO’s, microscope objectives; b) Gabor 

holography illustration; c) Illustration of the focus position; 

 

7. 3.1 Digital Gabor Holography Arm 

A diode laser (635 nm) illuminates the sample from below, in transmission, along the 

DGH arm, Figure 7.3a, 7.3b. A fiber optic tip acts as a point source from where the light 

is radiated in spherical waves. The laser beam is collimated by a 4X microscope 

objective. Then it is diffracted (object wave) by the object points and interferes with the 

undiffracted (reference wave) light at the CCD plane to form a hologram. The imaging 
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lens is a Zeiss Plan-Neofluar 100X, 1.25 NA, oil-immersion objective with a back 

aperture of 6 mm. A red filter and a polarizer (not shown in the figure) are inserted 

between the CCD and the dichroic mirror. The red filter blocks reflections from the 

trapping light and the polarizer adjusts light intensity at the camera. A set of 1000 

holograms are recorded in 100 seconds, by the CCD and saved into computer for post-

processing. 

 

7.3.2. Optical Trap Arm 

A Millenia V Spectra Physics 532 nm laser is used to trap the particle, as shown in Figure 

7.3a, 7.3c. The trapping beam passes through a combination of mirrors to position the 

beam at the desired height. Microscope objective MO1 expands the beam and the 

combination of L1 (f1 = 10cm), L2 (f2 = 15 cm) adjusts the beam diameter to just overfill 

the back aperture of the trapping optics. After that, the beam enters the microscope 

through a dichroic mirror. The dichroic mirror reflects the trapping beam and then it is 

focused by MO2, thus forming the optical trap near the sample plane. The front working 

distance is 0.17 mm , and the back image distance is 160 mm. The lens L2 with a focal 

length of 150 mm is positioned at 31 cm from the back of MO2. The dichroic mirror 

transmits the illumination beam and reflects the trapping beam. The trapping light 

backward-scattered by the trapped object has two parts; one is the reflected light outside 

of the microscope, and the other one, approximately 15% of the scattered light, arrives at 

the camera if the red filter is removed and may be used to initially find the focal position 

Figure 7.5a. Figure 7.5b shows an optically trapped bead with a field-of-view of 

11.5 11.5x mμ  or 150x150 pixels. 
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Figure 7.5. a) Focused Trapping Light; b) Optically trapped particle; FOV=11.5 11.5x mμ  

or 150x150 pixels. . 

 

7. 4. Results 

We performed experiments on optically trapped co-polyester microspheres immersed in 

ethylene glycol, with viscosity of 20.0161 Nm/sη =  The tracking of a single particle 

along x, y, z axis is shown in Figure 7.5. We noticed a low frequency variation in the x, y 

data. This is due to the low speed CCD camera. We also noticed a drift in the z axis, 

noticing the particle tried to escape the trap. 
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Figure 7.6. Three-Dimensional Single Particle Tracking Function of Time; a) along x 

axis; b) along y axis; and c) along z axis. 

 

 We obtained the mean-square –displacement (MSD), individual axis and 3D, 

from the measured displacements of an optically trapped microsphere in ethylene glycol 

according to the formula [28]: 

[ ]{ }
1

2

1

1( ) ( ) ( )
( 1 )

N n

j

MSD n t r j t r n t
N n

δ δ δ
− −

=

= −
− − ∑   (7.11) 
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where, tδ  is the time resolution, and ( ) ( )r j t r n tδ δ−  describe the particle position 

following a time interval n tδ  after starting at position ( )r j tδ , N is the total number of 

frames, n, j integers. 

 Evidence for distinct trapping, hopping, and hindered-diffusive regimes are seen 

in the mean-square displacement and the probability distribution ( )P x [29]. Figure 7.7a , 

b depicts the MSD in x, y, z versus the time interval τ . Looking at the three graphs 

xMSD , yMSD , zMSD  versus the time interval 25sτ = , Figure 7.7a, the xMSD  and 

yMSD  at first increase with increasing τ and later become stationary, Figure 7.7b. This 

behavior of the MSD shows clear evidence of the trapping.  

 

 

   a)      b) 

Figure. 7.7. The Mean-Square-Displacement Versus Time Intervals of an Optically 

Trapped Particle in Ethylene Glycol; a) MSD along x, y, z axis, 25sτ = b) MSD along x, 

y axis, 40sτ = . 

 

The zMSD does not have the same trend as xMSD  and yMSD  since it first increase 

quickly; then attains a plateau and temporarily ceases to increase, Figure 7.8. Hopping 
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particle was observed to escape traps (the drift in z). At large τ  the zMSD  of a hopping 

particle increases with increasingτ . 

 

 

 

Figure. 7.8. The Mean-Square-Displacement in the Z direction Versus Time Intervals 

of an Optically Trapped Particle in Ethylene Glycol, along z axis, 90sτ = . 

 

Increasing the optical power of the trapping beam from 38 mW to 201 mW, the 3D 

distribution of the particle displacements becomes more compact as is shown in the 

Figure 7.9. 
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Figure. 7.9. 3D Scatterplots of an Optically Trapped Bead. a) The 3D distribution of 

the particle positions at the laser power P = 38 mW; b) The 3D distribution of the particle 

positions at the laser power P = 201 mW;  

 

Using the equipartition theorem we calculated the spring constants , ,x y zk k k  for each 

coordinate , ,x y z and the results are graphed versus the laser power in Figure 7.10. The 

spring constant in the axial (z) direction is different from (and weaker than) the transverse 

(x and y) directions (in fact for nano/micro-particles the spring constants in x- and y- are 

also different from each other due to polarization induces symmetry breaking).  
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Optical Trap Stiffness Versus Laser Power (Equipartition)
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Figure. 7.10. Equipartition Calibration Method. Spring constant as a function of the 

laser beam power. R2 (=Regression Sum Squares / Total Sum Squares) represents a figure 

of merit of curve fitting; R2 = 1 means a perfect fit. 

 

We also followed the procedure described by Equation (7.11). Probability distributions 

are fitted to a Gaussian curve to derive the potential energy for each x, y, z wells. In 

Figure 7.11a the optical parabolic potentials E(x), E(y), and E(z) are displayed for an 

optically trapped particle at P =38 mW. E(x) is stronger than E(y) and E(z). In Figure 

7.11b the optical parabolic potentials E(x)’s for an optically trapped particle at P =2.5 

mW, 45 mW, 107 mW, 156 mW, 173 mW, 201 mW are also shown. The correspondent 

spring constants are shown in Figure 7.12. The linearity between the spring constants and 

the laser power is preserved. 
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Figure. 7.11. Boltzmann Statistics Calibration Method. a) Optical parabolic 

potentials E(x), E(y), and E(z) for an optically trapped particle at P =38 mW. b) Optical 

parabolic potentials E(x)’s for an optically trapped particle at P =2.5 mW, 45 mW, 107 

mW, 156 mW, 173 mW, 201 mW.  

 

The narrow the displacement distribution is, the stronger the stiffness of the potential well 

is. As we see the E(x) becomes steeper and the force constant becomes larger and larger 

once the optical power increases.  
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Figure. 7.12. Boltzmann Statistics Calibration Method. Spring constant as a function 

of the laser beam power. R2 (=Regression Sum Squares / Total Sum Squares) represents a 

figure of merit of curve fitting; R2 = 1 means a perfect fit. 
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7. 5. Conclusions  

We have demonstrated how one may calibrate an optical tweezers based on digital Gabor 

holography of a co-polymer particle. We have characterized the Brownian motion as an 

essential element for optical force calibration using optical tweezers. Spring constants 

and subsequently force measurements were measured from the statistical analysis of the 

oscilations of the optically trapped particle. The 3D position is tracked by analysis of the 

complex optical field reconstructed via the angular spectrum method. Stiffness of the 

optical trap is calculated by three calibration methods: equipartition theory, and 

Boltzmann statistics. The results confirm the linear relationship between the stiffness and 

the trapping laser power. The values of the spring constants of the radiation force, in the 

axial (z) direction is different from (and weaker than) the transverse (x) and (y). The 

digital Gabor holography microscope together with the optical trapping arm can be used 

as a new tool to study how cells ingest foreign particles through the process known as 

phagocytosisa, and to understand a variety of biophysical processes such as organelle–

membrane interactions or the cytoskeletal rearrangements. Moreover, the digital 

interference holography techniques could be combined with optical tweezers to monitor 

and quantify membrane physical properties as a response to the evolution of the malaria 

parasite acting on erythrocytes. The three-dimension map of cell refractive index gives 

subsequently information of nanoscale cell membrane thickness fluctuation in infected 

erythrocytes, which is the leading factor in quantifying the cell deformation. Another 

possible investigation is to understand the cytoadherence of infected cell under 

physiological shear stresses in blood vessels and capillaries monitoring healthy and 

infected cells on various substrates. 
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CHAPTER 8 

CONCLUSIONS AND FUTURE WORK  

 
8. 1 Conclusions 

In this dissertation, I have demonstrated and applied the latest development of digital 

holography techniques. Results confirm the capability of digital interference holography 

instrument (DIH) to image in-vitro human macular, optic nerve tissue, and fingerprint 

patterns. This work is to my knowledge a novel and innovative approach to ophthalmic 

and fingerprint imaging. I have also successfully demonstrated the Brownian motion 

tracking of the optically trapped particles by digital Gabor holography. I have 

demonstrated the capability of digital interference holography to produce micron-size 

images without out-of-focus of the entire specimen. 

 First, I have characterized the digital interference holography systems in terms of 

wavelength scanning capabilities. The scanning time is 30 s and the signal-to-noise ratio 

(SNR) is about 50 dB. The axial resolution is a parameter that depends on the wavelength 

scanning range and is obtained by superposing all optical fields. The axial resolution of 

the system is 5 mμ . Calibration experiments using a resolution target demonstrates 

improvement of SNR with increasing number of holograms consistent with theoretical 

prediction. The SNR of tissue images, 50 dB is comparable to that of the resolution 

target, implying the imaging system is operating at close to theoretical optimum. 
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 Tunable lasers are particularly sensitive to chromatic-dispersion, ( )n λ , 

characteristics of materials, in particular second-order ''k  and third order dispersion '''k , 

which typically cause broadening of the axial point spread function. I introduced and 

demonstrated a phase-matching scheme to make consecutive wavelength phase 

differences as identical as possible. 

 Imaging experiments on retinal tissue reveal topography of blood vessels as well 

as optical thickness profile of the retinal layer. I have already demonstrated that, in vitro, 

DIH can measure the dimensions of the scleral ring and provide an answer regarding the 

size of the optic disk, a clinically important parameter. The disc diameter is about 1750 

mμ , and the cup depth is about 240 mμ . The depth between the retinal fiber and the 

retinal pigmented epithelium layers is about 84 mμ . 

 This method could be applied in ophthalmology as a noninvasive, high speed tool to 

image the retinal and choroidal sub-structure and have significant applications in a 

variety of retinal disorders, especially macular degeneration, diabetic retinopathy and 

glaucoma. 

 This research has also shown how the DIH technique could be used in the field of 

forensic science as a fingerprint scanner to identify and quantify Level 1 (pattern), Level 

2 (minutia points), and Level 3 (pores and ridge contours) fingerprint characteristics from 

amplitude images.  

 The optical thickness profile of a transparent object can be obtained from 

quantitative phase images. Usually, two important parameters are subsequently derived 

from the optical thickness profile, the physical thickness and the index of refraction of the 

sample. Holographic phase microscopy DIH is used to produce images of thin film 
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patterns left by latent fingerprints. The optical thickness range of the latent fingerprints 

was 136 mμ  concerning with our experiment. These results have revealed the DIH is 

highly effective for biometry applications. 

 Furthermore, I have demonstrated a new technique for position and force 

calibration of optically trapped particles combined with digital Gabor holography. The 

system offers high-resolution 3D particle-tracking capabilities. The Gabor holography 

instrument is used to track and monitor co-polyester microsphere beads moving in depth 

over time, and when an optical trapping arm is attached to the microscope, the system can 

track and monitor optically trapped small objects undergoing Brownian motion. The 3D 

position is tracked by analysis of the complex optical field reconstructed via the angular 

spectrum method. Stiffness of the optical trap is calculated by two calibration methods: 

equipartition theory, and Boltzmann statistics. The results confirm the linear relationship 

between the stiffness and the trapping laser power. The values of the spring constants of 

the radiation force, in the axial (z) direction is different from (and weaker than) the 

transverse (x) and (y). The average values of the spring constants are: the spring constant 

along x axis 67.6*10 /kx N m−= , the spring constant along y axis 64.8*10 /ky N m−= , 

and the spring constant along z  axis 75.0*10 /kz N m−= . 

 Optical tweezers in addition to digital holography can investigate systematically 

the large deformation characteristics of the human red blood cell infected by malaria 

parasite and to perform quantitative assessment and optimization of a variety of surface 

attachment technique. 
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8. 2 Future Work 

8.2.1 Tunable Source and the Wavelength Scanning System 

I have developed a modification of the hologram exposure method so that the holograms 

are taken at equal intervals of wave vectors, not wavelengths (Figure D. 4). I noticed no 

improvement in the SNR of the reconstructed images. I believe the DIH imaging dynamic 

range or SNR will be improved by replacing the dye laser with a swept source, 

introducing a high-speed camera and increasing the number of recorded holograms. 

 The light source is one of the most important components in any wavelength 

scanning imaging system. At this point, our scanner has to overcome the signal-to-noise 

ratio issue, to provide clinically relevant information. The scanning time is 30 s and the 

signal-to-noise ratio (SNR) is about 50 dB. A swept light source with an appropriate 

actuator and a sweep function parameterized by time is desirable for the DIH system to 

improve the system performance. Important key parts of a swept source are the optical 

gain medium and the linearity of the light source (data recorded evenly in k space). 

Research based on the use of semiconductor optical amplifier (SOA) as optical gain 

medium was already demonstrated [1-3]. 

 

8.2.2 Multiplicative Noise (Speckle) Reduction  

The digital interference holography apparatus needs improvement in terms of speckle, 

energy loss, and other noise introduced by the stray reflections or CCD.  

 There are two types of noise that we encounter in imaging systems, additive and 

multiplicative. The additive noise is not part of the signal and is spatially uncorrelated, 

this means the noise for each pixel is independent and identically distributed (iid). Also, it 
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may be caused by a wide range of sources, e.g. variations in the detector sensitivity, 

environmental variations, the discrete nature of radiation, transmission or quantization 

errors, etc. In multiplicative noise, speckle is dependent on image data and it arises when 

the radiation is scattered by the object. 

 Digitally recorded and reconstructed holograms contain not only spectral 

information but also the coherent noise, speckle, introduced by the illumination source, in 

our case the laser, which decreases the spatial resolution of the image. When coherent 

radiation is reflected, the surface imperfections of the illuminated object generate a 

random interference that corrupts the image with a diffuse pattern called speckle noise, 

which is very difficult to filter because of its random and multiplicative nature.  

 Speckle noise is a common phenomenon in all coherent imaging systems like 

laser, acoustic and SAR imagery [4, 7, 10]. Its undesired effect was recognized from the 

very beginning of holography [5, 8]. The digitally recorded and reconstructed data are 

stored in the computer as complex numbers. To improve the spatial resolution and image 

quality of holographic images, the complex noise stored with the data can be reduced by 

applying various speckle reduction filters [6, 7].  

 Our scanning digital interference system does not benefit from these approaches. 

The coherent noise level explodes with the increasing of the laser intensity in the time of 

the wavelength scanning and we cannot control it.  

 Goodman [8] showed that the speckle can be reduced by superimposing 

M uncorrelated speckle patterns using an active diffuser placed in an intermediary image 

plane. The active diffuser is moved in the intermediate image plane in a rotation about a 

display system optic axis in order to create a shifting phase at a display screen. Moreover, 
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all M independent speckle configurations have equal mean intensities and the speckle 

contrast is reduced from 1 to 2/1/1 M .  

 In our noise multiplicative model the observed value 2E  will be modeled as a 

random variable resulting from the product of two independent random variables, which 

correspond to the image in the reconstructed optical field 1E  and the stationary 

multiplicative noise n . 

 After elimination of zero-order term and virtual image, the real image optical field 

2E  can be represented as: 2 1E nE= , where 1 0 0exp( )E E iϕ= , and exp( )nn E i nϕ= , 

2 1 0 0exp[ ( )]nE nE nE i ϕ ϕ= = + .The intensity distribution of this optical field becomes 

2 2
2 2 0nI E E E E∗= = . If M holograms of the same scene and wavelength are recorded, each 

of them is individually reconstructed and added on an intensity basis. The result contains 

the object information 2
0E  and a new noise newn , where 

1
2

0
M

N

new n
i

n E
−

=

= ∑ . 

This noise can be characterized as random multiplicative noise, following a Gamma 

distribution as both real and imaginary parts of the speckle have zero-mean Gaussian 

density, and the contrast of this type of distribution behaves as 1/ 21/ M [8, 11]. A 

motorized diffuser will be added in the front of the object, and it will rotate in N different 

positions but remain motionless during the detector’s integration time. 

 

8.2.3 Fundus Camera Adaptation for Digital Interference Holography Imaging 

Imaging measurements and experiments will be performed using the fundus camera. The 

performances will be assessed and optimized to be compatible with current ophthalmic 
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imaging applications. The retinal camera is a model TRC-50X (mydriatic retinal camera); 

Topcon Corp., Tokyo, Japan equipped with a digital back piece, MEGAPLUS model 1.4; 

Eastman Kodak, San Diego, CA and a PC-based image-management system (Ophthalmic 

Imaging Systems Inc., Sacramento, CA).  

 The fundus camera will be incorporated into the optical design in the object arm, 

and the reference arm length has to be modified in order to match the coherence length of 

the laser beam. The light coming from the laser reflects back from the object (the fundus 

camera image) and the reference mirror, interfere both at CCD plane and form the 

interference patern.  

 A few methods have been previously reported [8] for holographic imaging of the 

eye using a fundus camera. A modified Zeiss fundus camera was used [9] to obtain 

holograms. Resolution near the resolution limit of the camera, 20 μ m, has been obtained 

in holograms of the fundus of anaesthetized cats. 

 Finally, the laser power has to be modified to agree with the American 

Conference of Government Industrial Hygienists (ACGIH) standards. Then, the DIH 

setup will be substantially improved and suitable for clinical usage. 

 

8.2.4 Integrated optical diagnostics technique to investigate mechanical properties of 

single erythrocytes infected with malaria parasite 

A Plasmodium falciparum (Pf) is a malaria parasite which infects human erythrocytes, 

resulting in changes in their biological functions and modifications to their physical 

properties. Notable changes in physical characteristics of the cell membrane, such as 

elasticity and permeability, have been observed and believed to be inter-related with the 
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adherence force of erythrocytes to endothelial cells. However, there has been no 

systematic, quantitative study of this aspect. Erythrocyte membrane provides a barrier 

maintaining the integrity of the cell and consists of three major components: a mixed 

lipid-protein bilayer; a cytoskeletal network structure whose main components are 

spectrin proteins [12, 13], and transmembrane proteins such as glygoproteins, band 3, and 

glygophorin. Stability in the macroscopic characteristics of the plasma membrane is the 

key to maintain the physical integrity and biological function of the cell. In the 

macroscopic scale, differences in mechanical properties between healthy and malaria-

infected cells have been investigated in an effort to develop image-based single cell 

diagnostics. Healthy red blood cells experience numerous deformations and significant 

shape changes in flow, being squeezed and elongated through narrow capillaries [14]. On 

the other hand, the elasticity of Pf-infected cells is substantially decreased and tend to 

aggregate in a blood vessel. Furthermore, infected cells tend to adhere to endothelial 

cells, where Pfs export proteins to the erythrocyte plasma membrane to result in protein-

rich “knob” regions in the membrane, enabling the infected cells to readily adhere to the 

receptors of endothelial cells [15] The expression of “knob” proteins on the membrane 

may induce sub-micron scale “flicker” motion of the membrane, which is also associated 

with the cooperative motion between its cytoskeleton and lipid bilayer. The key 

hypothesis of a future experiment will be that this sub micron scale membrane fluctuation 

influences the cytoadherence of erythrocytes to endothelial cells. In malaria disease, 

adherence of erythrocytes to endothelial cells is one of the key processes of human 

infection. Therefore, measurements will focus on inter-relating the cytoadherence 

properties with submicron scale mechanical motion of the membrane. 
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 The idea is to develop a novel imaging method where digital interference 

holography technique is combined with optical tweezers to enable quantitative dynamical 

imaging of single erythrocytes in a native condition. The role of optical tweezers is two-

fold: (1) immobilizing erythrocytes without attaching them onto a substrate to enable 

imaging them in a native condition; (2) assessing adherence force of erythrocytes on the 

surface of a monolayer of endothelial cells or on the surface of biomimetic substrates of 

endothelial cells. Erythrocytes which are attached onto a biomimetic substrate mimicking 

endothelial cell surface can be shear-stretched by optical tweezers to assess the stretching 

behaviors between normal cells and infected cells. Shear modulus calculation using 

digital interference holography will be performed and compared with the shear modulus 

obtained by the optical tweezers. 

 We expect to build up the 3D structure of the cell by digital interference 

holography, to extract the three- dimensional cell thickness fluctuation maps, and to 

quantify the elastic shear modulus using both optical tweezers technique and the digital 

holography on a variety of substrates. A list of potential impact areas includes better 

understanding of the pathophysiology of the disease, the development of medical 

diagnostic devices that are not only novel, portable and inexpensive, but also accessible 

to the developing world where some diseases are especially rampant. 
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Appendix A: Digital Interference Holography Wavelengths Superposition 
 

The electromagnetic signal is represented as a pair of real and imaginary signals. By 

convention, the measured signal is the real signal. As an example, the sinusoidal time 

varying signal has the expression, 

( ) ( ) ( ) ( )( ; ) ( )i kz wt i wt i z i wtz t Ae u z e Ae eϕψ − − −= = =    (A.1) 

where A is the amplitude, ( )kz wt− is the absolute phase, 2k π
λ

= is the wavevector, 

2w fπ= is the angular frequency, f  is frequency, t  is the time, z is the propagation 

distance. Also, the function ( )( ) i zu z Ae ϕ=  is called phasor, or complex amplitude of the 

signal, and ( )z kzϕ = is called the phase.  

 The real part of the Equation. (A.1) is ( )[ ] cos( )i kz wtE Ae A kz wt−= ℜ = − . Ignoring 

the time variation of Equation. (A.1), we obtain the expression: 

( ) ( )( ) cos( )i z i kzu z Ae Ae A kzϕ= = =     (A.2) 

 In the digital interference holography, we perform wavelength scanning and a 

hologram is recorded for each wavelength. The superposition of the reconstructed optical 

fields or cosine waves ( ) ( )( ) cos( )i ii z i k z
i i i i iu z Ae Ae A k zϕ= = =  for each wavelength iλ  

behaves as a periodic function of pulse-like picks with the period 
2
cλ

δλ
Λ = , and the width 

of each pulse 
2 2
c cz

N N
λ λδ
δλ λ

Λ
= = =

Δ
. Here, N is the number of wavelengths, cλ is the 



 156

central wavelength of the wavelength range, δλ  is the wavelength increment, and λΔ  is 

the wavelength range. If we consider the amplitude of each wave, iA , being constant over 

the wavelength range, and each 2
i

i

k π
λ

= with an increment of 

max min
max min

1 1k k k
λ λ

Δ = − = − , the addition of the N waves has the expression: 

).....1(..... )1(2

1

1321 kzNikzikzikzizikzikzikzikzik
N

i

zik eeeeeeeeee ii Δ−ΔΔΔ

=

+++++=++++=∑  (A.3) 

The summation of the exponential function is a geometric progression with a 

constant ratio of kzier Δ= . The Equation (A.3) becomes, 
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 Using the exponential expression for 
2

sin
ixix eex

−−
= , we get,  

)
2
1sin(

)
2
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1
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e
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N

i
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Δ

Δ
= Δ

Δ

=
∑ .   (A.5) 

 We know the wavevector is proportional with the reciprocal of the wavelength, 

2k π
λ

= . The derivative of the wavevector is 2

22
c

dk δλ ππ
λ

= =
Λ

, the period of the pulses 

in the optical field superposition function has the form 2
k
π

δ
Λ = , and the width of each 
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pulse is z
N

δ Λ
= , where N is the number of wavelengths. We also call Λ the axial extent 

of the object and zδ the axial resolution of the system. 

 The simulation of the superposition of one (Figure A1.a), 50 (Figure A1.b), 100 

(Figure A1.c), and 200 (Figure A1.d) optical fields versus the reconstruction distance 

( 3000z mμ= ) are shown below. The wavelength range is 35nmλΔ =  

( min 0.565 mλ μ= , max 0.600 mλ μ= ). The digital interference holography apparatus is an 

off axis holography setup in reflection geometry so all parameters from the graph with 

significance of distance have to be divided by 2. For the case with one optical field there 

is no periodicity so I will not give details about this graph (Figure A1.a). For the other 

cases, the parameters are: 

- for N = 50 wavelengths, -10.013 mkδ μ= , 242.1429 mμΛ = , 4.8429 mzδ μ= .  

- for N = 100 wavelengths, -10.0065 mkδ μ= , 484.2857 mμΛ = , 4.8429 mzδ μ= .  

- for N = 200 wavelengths, -10.0032 mkδ μ= , 968.5714 mμΛ = , 4.8429 mzδ μ= .  
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Figure A1. Optical field superposition simulation, 35nmλΔ = ; a) One wavelength; 

b) 50 wavelengths; c) 100 wavelengths; d) 200 wavelengths. 

 

If the wavelength range interval is doubled than before, 70nmλΔ =  

( min 0.560 mλ μ= , max 0.630 mλ μ= ), the width of the pulses are thinner by a factor of two. 

It means the axial resolution increases by increasing the wavelength range. 

Figure A2 shows the optical field superposition 70nmλΔ = . The scanning parameters 

are: 

- for N = 50 wavelengths, -10.0249 mkδ μ= , 126 mμΛ = , 2.52 mzδ μ= .  

- for N = 100 wavelengths, -10.0125 mkδ μ= , 252 mμΛ = , 2.52 mzδ μ= .  

- for N = 200 wavelengths, -10.0062 mkδ μ= , 504 mμΛ = , 2.52 mzδ μ= .  
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Figure A2. Optical field superposition simulation, 70nmλΔ = ; a) One wavelength; 

b) 50 wavelengths; c) 100 wavelengths; d) 200 wavelengths. 
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Appendix B: Diffraction Reconstruction Methods Comparison 
 

This appendix contains two parts. The first part covers the derivation of the Fresnel 

transform from the angular spectrum of a plane wave. In the second part, the interface of 

the computer program written in LabView is presented which is used to reconstruct 

numerically a hologram using the angular spectrum and the Fresnel method. 

 

B1. From the Angular Spectrum to the Fresnel Transform 

The optical field can be reconstructed using any reconstruction distance using the angular 

spectrum method. The accuracy of the Fresnel integral is good to distances close to the 

aperture (Goodman). Here we want to derive the Fresnel approximation from the point of 

view of the angular spectrum method starting from the transfer function of propagation 

through space, 

2 2exp[ ]
( , )

0
x y

x y
jz k k k

H k k
⎧ − −⎪= ⎨
⎪⎩

     (B1) 

where the exponential is defined for 2 2 2
x yk k π

λ
+ <  and the transfer function is 0 

otherwise. 

 The more usable expression for the Huygens-Fresnel principle needs 

approximations for the absolute distance 2 2 2r x y z= + + , Equation (B2) and for the 

wavevector along the propagation distance 2 2 2
z x yk k k k= − + , Equation (B3). 
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2 2 2 2 2 2 2 2
2 2 2 2 1/ 2

2 2 2 2[ (1 )] (1 .....) (1 )
2 4 2

x y x y x y x yx y z z z z
z z z z
+ + + +

+ + = + = + − + ≅ +  (B2) 

 
2 2 2 2

x y zk k k k= + + , 
2 2 2 2 2 2

2 2 2
2 .....)

2 4 2
x y x y x y

z x y
z

k k k k k k
k k k k k k

k k k
+ + +

= − + = − − + ≅ −  (B3) 

 

The optical field at the hologram plane is );,( 0000 zyxE . A complex field 

);,( 0000 zyxE  at a position vector )0;,( 000 =zyx  can be decomposed into its spectrum of 

plane-wave components )0;,(0 yx kkA  defined by the Fourier transform, 

0 0 0 0 0 0 0 0 0( , ;0) ( , ; )exp[ ( )]x y x yA k k E x y z i k x k y dx dy= − +∫∫   (B4) 

The angular spectrum can then be propagated in space along the z –axis, 

perpendicular to the hologram plane, multiplying the Equation (B4) by ]exp[ zik z . 

2 2

0 0 0 0 0 0 0 0 0( , ; ) exp[ ( ) ] ( , ; )exp[ ( )]
2

x y
x y x y

k k
A k k z i k z E x y z i k x k y dx dy

k
+

= − − +∫∫  (B5) 

The reconstructed complex wave-field ( , , )E x y z  is found by: 

0

2 2

0 0 0 0 0 0 0 0

2 2

0 0 0 0 0 0 0 0

( , , ) ( , ;0)exp[ ( )]

( ( , ; )exp[ ( )] )exp[ ( ) ( ) ]
2

exp( ) ( ( , ; )exp[ ( )] )exp[ (
2

x y x y x y z

x y
x y x y x y

x y
x y x y

E x y z dk dk A k k i k x k y k z

k k
dk dk E x y z i k x k y dx dy i k x k y i k z

k
k k

ikz dk dk E x y z i k x k y dx dy i
k

= + +

+
= − + + + −

+
= − + −

∫∫

∫∫ ∫∫

∫∫ ∫∫
2 2

0 0 0 0 0 0 0 0

]

exp( ) ( , ; ) exp[ ( ) ( ) ( )]
2

x y

x y
x y x y

z k x k y

k k
ikz E x y z dx dy i z ik x x ik y y dk dk

k

− −

+
= − + − + −∫∫ ∫∫

(B6) 

To solve the exponential integral we need the identity: 

2
2exp( ) exp( )

4
i ibiax ibx dx
a a
π∞

−∞

+ = −∫     (B7) 

where 
2
za
k

= − , and 0( )b x x= − or 0( )b y y= − . Using this identity, the Equation (B6) 

becomes, 
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2 2
0 0 0 0 0 0 0 0( , , ) 2 exp( ) ( , ; ) exp [( ) ( ) ]

2
ik ikE x y z ikz E x y z dx dy x x y y
z z

π ⎧ ⎫= − − + −⎨ ⎬
⎩ ⎭∫∫   (B8) 

Developing further this equation we get, 

0 0

0 0

2 2 2 2
0 0 0 0 0 0 0 0

2 2 2 2
0 0 0 0

( , , ) 2 exp( )exp[ ( ) ( , ; ) exp [( ) 2( )]
2 2

2 exp( )exp[ ( ) ( , ; )exp[ ( )] [ , ]
2 2 x y

ik ik ikE x y z ikz x y E x y z dx dy x y xx yy
z z z

ik ik ikikz x y E x y z x y k k
z z z

π

π

⎧ ⎫= − + + + −⎨ ⎬
⎩ ⎭

⎧ ⎫= − + +⎨ ⎬
⎩ ⎭

∫∫

F

           (B9) 

As a conclusion, we obtained the optical field based on the Fresnel approximation 

from optical field based on the angular spectrum method. The two optical fields are 

identical within the approximations (B2) and (B3).  

 

B2. Difraction Reconstruction Methods. Computer Main Screen. 

 

 
 
Figure B.1: Main screen of difraction reconstruction methods Labview program. 
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Appendix C: Fourier Transform 
 

FOURIER TRANSFORM 

 
If f(x) is a reasonably well-behaved function, then 
 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ){ }[ ] ( ) ( ){ }[ ]1

1 exp
2
1 exp
2

f x F k ikx dk

F k f x ikx dx

F k f x k f x F k x

π

π

∞

−∞

∞

−∞

−

=

= −

= =

∫

∫

F F

 

 
FOURIER SERIES 
 
If f(x) is a periodic function of period Λ , then 

 
f x( ) = Fn exp inKx( )

n= −∞

∞

∑

Fn =
1
Λ

f x( )exp −inKx( )dx
0

Λ

∫
 

 

where K ≡
2π
Λ

 is the fundamental frequency. 

 
DISCRETE FOURIER TRANSFORM 
 

f(x) defined in [-X/2, X/2]:   f x( ) = 0 for  x ∉ −
X
2

,
X
2

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥  

 

fs(x) sampled at xδ  intervals:  fs x( ) = f x( )⋅ comb
x

δx
⎛ 
⎝ 

⎞ 
⎠  

 

i.e., fs xi( )= f xi( )  for  xi ∈ −
X
2

:δx:
X
2

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥  
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Fourier transform Fs(k): 
 

  

Fs k( ) = F fs x( ){ } k[ ]= F f x( )⋅ comb
x

δx
⎛ 
⎝ 

⎞ 
⎠ 

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

= F k( )⊕
2π

δx
comb

k
2π / δx

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ =

2π
δx

F k − n
2π
δx

⎛ 
⎝ 

⎞ 
⎠ 

n= −∞

∞

∑
 

 

Therefore, if F k( ) = 0  for  k ∉ −
K
2

,
K
2

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ , where K =

2π
δx

,  then  

 

Fs k( ) = F k( )  for  k ∈ −
K
2

,
K
2

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥  

 
Conversely: 

F(k) defined in [-K/2, K/2]:   F k( )= 0  for  k ∉ −
K
2

,
K
2

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥  

 

Fs(k) sampled at kδ  intervals:  Fs k( )= F k( )⋅ comb
k
δk

⎛ 
⎝ 

⎞ 
⎠  

 

Fourier transform fs(x):   fs x( ) = f x( )⊕
2π
δk

comb
x

2π / δk
⎛ 
⎝ ⎜ ⎞ 

⎠ ⎟  

 

Therefore, if f x( ) = 0  for  x ∉ −
X
2

,
X
2

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ , where X =

2π
δk

,  then  

 

f(x)

x

X/2-X/2 0dx

F(k)

k

K/2-K/2 0dk
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fs x( ) = f x( )  for  x ∈ −
X
2

,
X
2

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥  

 
Therefore, if both f(x) and F(k) are discretized with N+1 points, then: 
 

 
K = Nδk = N 2π

X
= 2π

δx
δk = K

N
= 2π

Nδx
= 2π

X

X = Nδx = N
2π
K

=
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δx =
X
N

=
2π
Nδk

=
2π
K

⎧ 
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⎪ ⎪ 

⎩ 
⎪ 
⎪ 

 

 
 

DIRAC DELTA FUNCTION PROPERTIES 
 

 

δ x − x0( )dx
−∞

∞

∫ =1

f x( )δ x − x0( )dx
−∞

∞

∫ = f x0( )

δ αx( ) =
1
α

δ x( )

δ −x( ) = δ x( )
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Appendix D: Digital Interference Holography Computer Interface 
 

This appendix contains a few computer programs, for digital interference holography, 

written in Labview. The main Digital Interference Holography computer interface 

(Figure D.1) has designated buttons and each of them performs specific functions. They 

are: 

- set mike, the micrometer setup which is used for the calibration 

- Holo EE, the reconstruction of a hologram using the angular spectrum method 

- set camera, the camera setting 

- ws HHH, which is used to acquire holograms from the IMAQ CCD camera 

for each wavelength in the wavelength range. 

- DIH calc, which has the option to perform/ not to perform the phase-matching 

correction, does the optical field superposition, and saves the stack of 

holograms. 

- DH View which is used to visualize various image files already saved. 
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Figure D.1: Main screen of Digital Interference Holography Labview program. 
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Figure D.2: Calibration via micrometer controller. 

 

 

 



 169

 

Figure D.3: Calibration curve, micrometer position versus wavelength. 

 

Figure D.4: Calibration curve, micrometer position versus wavevector. 
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Figure D.5: Digital interference holography, holograms acquisition from the IMAQ 

CCD camera 

. 
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Figure D.6: Holograms acquisition. Block Diagram. 

 

 

 

 

 

 



 172

 

 
 

Figure D.7: Phase-match, Filter correction. Block Diagram. 
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Figure D.8: Phase-unwrapping using DIH. Block Diagram. 
 
 
 

 
 

Figure D.9: Phase-unwrapping using DIH. Block Diagram. 
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Appendix E: Brownian Motion and Optical Trapping Computer Interface 
 

This appendix contains selected computer programs, for Brownian motion and optical 

trapping, written in Labview. The main computer interface functions are: 

- set camera, the camera setting 

- Reconstruction distance, the reconstruction of a hologram using the angular 

spectrum method 

- Get holograms, which is used to capture holograms from the IMAQ CCD 

camera for a time interval. 

- EE Rec, has two option, to performs individual hologram reconstruction, and 

to perform hologram differences for particle tracking. In both cases the results 

are saved at the end. 

- Gabor View which is used to visualize various image files already saved. 
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Figure E.1: Main screen of Brownian motion and optical trapping Labview 

program. 
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Figure E.2: Brownian Motion and Optical Trapping, holograms acquisition from 

the IMAQ CCD camera. 
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Figure E.3: Sequence acquisition of multiple holograms. Block Diagram. 
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• M. C. Potcoava, C. N. Kay, M. K. Kim, and David W. Richards, “Digital 

Interference Holography in Ophthalmology”, Journal of Modern Optics. 

(Accepted). 

• M.K. Kim and M. C. Potcoava, “Fingerprint Biometry Applications of Digital 

Interference Holography”, Applied Optics (In Review).  

• M. C. Potcoava, L. Krewitza and M.K. Kim, “Brownian motion of optically 

trapped particles by digital Gabor holography” (To be submitted to Optics 

Express). 

 

PROCEEDINGS 

• M. C. Potcoava and M.K. Kim, “Fingerprints scanner using Digital Interference 

Holography ”, in Biometric Technology for Human Identification VI, (SPIE 

Defense, Security, and Sensing 2009), paper presentation 7306B-80. 

• M. C. Potcoava, M. K. Kim, Christine N. Kay, “Wavelength scanning digital 

interference holography for high-resolution ophthalmic imaging”, in Ophthalmic 

Technologies XIX, (SPIE 2009 BiOS), paper presentation 7163-10. 
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