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We present a phase aberration correction method based on the correlation between the complex full-field
and guide-star holograms in the context of digital holographic adaptive optics (DHAO). Removal of a
global quadratic phase term before the correlation operation plays an important role in the correction.
Correlation operation can remove the phase aberration at the entrance pupil plane and automatically
refocus the corrected optical field. Except for the assumption that most aberrations lie at or close to the
entrance pupil, the presentedmethod does not impose any other constraints on the optical systems. Thus,
it greatly enhances the flexibility of the optical design for DHAO systems in vision science and micros-
copy. Theoretical studies show that the previously proposed Fourier transformDHAO (FTDHAO) is just a
special case of this general correction method, where the global quadratic phase term and a defocus term
disappear. Hence, this correction method realizes the generalization of FTDHAO into arbitrary DHAO
systems. The effectiveness and robustness of this method are demonstrated by simulations and experi-
ments. © 2013 Optical Society of America
OCIS codes: (090.1995) Digital holography; (010.1080) Active or adaptive optics; (170.4460)

Ophthalmic optics and devices; (170.0180) Microscopy.
http://dx.doi.org/10.1364/AO.52.002940

1. Introduction

Adaptive optics (AO) was initially presented to elimi-
nate or alleviate the image distortion due to the
atmospheric turbulence in astronomy [1]. Nowadays,
AO has become necessary for most of major ground-
based telescopes [2,3]. Similar to the ground-based
telescopes, the human eye also suffers from many
monochromatic aberrations. In 1994, the Shack–
Hartmann wavefront sensor used in astronomy
was first adopted to measure the ocular aberrations
of the human eyes by Bille’s group [4]. The first AO
system for vision science was assembled by Liang
et al. in 1997 [5]. Using this system, the retinal im-
ages at the cellular scale were obtained. Since that
time, AO in vision science has seen rapid growth with
more and more systems being developed [6–11]. AO

has also demonstrated success in microscopy [12].
The aberrations induced by variations of refractive
index through the sample can be reduced through
the AO system [13]. A typical AO system includes
several critical hardware pieces: deformable mirror,
lenslet array, and a second CCD camera in addition
to the camera for imaging. A novel AO system was
recently proposed to replace these hardware compo-
nents with numerical processing for wavefront meas-
urement and compensation of aberration through the
principles of digital holography [14–19].

In the original digital holographic adaptive optics
(DHAO) system, the CCD was put in the image plane
of the pupil [14]. Although we can obtain a direct
measurement of the wavefront at the pupil, the imag-
ing lens other than the eye lens will introduce spheri-
cal curvature that has to be removed by additional
matching lens in the reference beam. Also, the correct
guide-star hologram is difficult to obtain. To get a
focused image, numerical propagation is necessary.
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To address these issues, Fourier transform DHAO
(FTDHAO) system was proposed [20]. The CCD was
put at the Fourier transform (FT) plane of the pupil,
instead of the image plane. No spherical curvature
was induced by the imaging lens. The CCD could di-
rectly record the point spread function (PSF) of the
system, facilitating the determination of the correct
guide-star hologram. In addition,with somemodifica-
tions, low coherence or even incoherent light source
may be incorporated [21–26]. Notwithstanding these
advantages over the original DHAO, the correction
method in FTDHAO has significant constraint in
the optical configuration. In this paper, we present
a more general and flexible correction method.
FTDHAO becomes a special case of this generalized
method. It is realized through the correlationbetween
the complex full-field hologram and the guide-star
hologram after removal of a global quadratic phase
term. This correlation operation can eliminate both
the aberration at the entrance pupil and the defocus
term, obtaining a corrected and focused image, no
matter where the CCD is placed. Except for the
assumption that the optical aberrations mainly lie
at or close to the pupil plane, the correlation method
does not set any other requirement on the optical sys-
tem. Therefore, it will greatly improve the flexibility
of the optical design for AO in vision science and
microscopy. The correlation method cannot only
maintain the merits possessed by FTDHAO, but
also can be applied for any DHAO systems. It is
worth noting that a similar method was used in
incoherent DHAO [23,24]. However, in principle,
it is different from the method presented in this
paper. Correlation operation used in incoherent
DHAO results in corrected intensity instead of cor-
rected complex amplitude. The observations on the
global phase term and the defocus term presented
in this paper were not shown in the method for
incoherent DHAO [23,24].

Section 2 presents a detailed mathematical de-
scription of this correction method. In this section,
the sampling requirements are also discussed. In

Section 3, three simulation examples are given.
Corresponding to the simulations, the experiments
are described and discussed in Section 4. The major
conclusions are summarized in Section 5.

2. Principles

A typical DHAO process includes phase aberration
measurement, full-field imaging, and image correc-
tion. The phase aberration is retrieved from a guide-
star hologram while the full-field image is obtained
from a full-field hologram that is distorted by the
aberration. The image is recovered by removing
the measured phase aberration from the distorted
full-field image [14,20]. In this paper, we treat the
correction from a different point of view by taking
correlation of the complex full-field hologram with
the complex guide-star hologram. Although the
derivation is based on a two-lens system, the gener-
alization of the conclusion to arbitrary optical sys-
tems is straightforward. The coordinates adopted
for this two-lens system are illustrated in Fig. 1.
For the purpose of brevity, one dimension is adopted
in the derivation. Assume the pupil of the lens L1 is
the entrance pupil of the system. The aberration-
free pupil function is represented by P�x1�, and the
phase aberration at the pupil is denoted by Φ�x1�.
The focal lengths of the lens L1 and L2 are f 1 and
f 2, respectively. Distances d1, d2, and d3 are as de-
fined in Fig. 1. The amplitude PSF of this system
is given by
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Fig. 1. Coordinates for a two-lens optical system.
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where a prefactor is dropped. A�x0� is the strength of
the point source at x0 of the sample plane, and λ is the
wavelength of the illumination. To simplify Eq. (1),
we define β and γ as

β � 1
1
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� 1

d2
− 1

f 1
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1
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: (2)

Then, Eq. (1) can be rewritten as
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To further simplify Eq. (3), we define the general
pupil function as

P1�x1� � P�x1�Φ�x1�Φd�x1�; (4)
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which is the defocus term of the system. The defocus
term becomes unity if the CCD is at image plane of
the sample. Now, Eq. (1) can be simplified as
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where FT denotes Fourier transform. The complex
amplitude of the optical field of an extended object
at the CCD plane is obtained by superposition of
the amplitude PSF of all the source points, which
is given by
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where Φq�x3� is given by
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This quadratic phase term appears outside the inte-
grals in Eqs. (6) and (8). It plays a crucial role in the
image correction, as will be validated in the following
two sections. From the guide-star hologram, we can
obtain the amplitude PSF given by Eq. (6). Removing
Φq�x3� from the amplitude PSF and setting the
source point at origin, we can obtain a modified am-
plitude PSF, as follows:
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: (10)

Similarly, a modified field of the extended object can
be obtained from the full-field hologram and numeri-
cal removal of the quadratic phase term Φq�x3�, as
follows:
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Correlating this modified field with the modified
amplitude PSF given by Eq. (10), we have
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where⊗ denotes correlation. According to the defini-
tion in Eq. (7), we have
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Plugging Eqs. (13) and (14) into Eq. (12), the corre-
lation operation results in
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From Eq. (15), the correlation operation removes
both the aberration term Φ�x1� and the defocus term
Φd�x1�, obtaining a corrected and focused image no
matter where the CCD is put. The magnification of
this corrected image is given by −�d2d3�∕γd1.
Although our derivation is based on a two-lens sys-
tem, the conclusion thus rendered can be generalized
to any optical system. The difference lies in the spe-
cific expressions for the defocus term Φd�x1� and the
global quadratic phase term Φq�x3�. According to the
convolution theorem, Eq. (15) can be implemented by

O1 ⊗ G1�x3� � IFTfFTfO1�x3�gFT�fG1�x3�gg; (16)

where IFT denotes the inverse Fourier transform.
O�x3� and G�x3� can be obtained through off-axis
holography [14–19]. Eliminating the quadratic phase
term Φq�x3� from O�x3� and G�x3�, we can get O1�x3�
and G1�x3�. To achieve the fields O1�x3� and G1�x3�
correctly, the sampling requirements have to be
taken into account. Taking FT of the amplitude
PSF of the source point at origin, we have
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where ⊙ denotes the convolution operation and f x is
the spatial frequency in the horizontal direction,

f x �
γ

λd2d3
x3: (18)

Expanding Eq. (17), it becomes the spectrum of a fi-
nite chirp function. The width of this spectrum can
estimated as that of the general pupil function
[17,27,28]. Because the sampling requirement for
the one-dimensional case is different from that for
the two-dimensional case, let us now consider the
two-dimensional case. If the CCD has M ×N square
pixels with side length Δx3, then the sampling spac-
ings of the spatial frequency along the horizontal and
vertical dimensions are given by

Δf x � Δf y �
γ

λd2d3
Δx3: (19)

Then the sampling spacings on two dimensions at
the pupil plane are given by [18,19]
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Δx1 � λd2d3

NγΔx3
and Δy1 � λd2d3

MγΔx3
: (20)

Assume the diameter of a round pupil is D that is
estimated as the width of the image order of the holo-
gram, and the width of zero-order of the hologram
is twice that of the image order. To recover the opti-
cal field at the pupil plane, the pupil size D has to
satisfy [29]

D ≤
			
2

p
λd2d3

4γΔx3
: (21)

Finally, it is worth mentioning that a special case of
the correlation method is FTDHAO, where d2 and d3
are equal to f 2 [20]. Then Eq. (21) evolves into the
expression for the sampling requirement in
FTDHAO.

3. Simulations

In the simulations, the focal lengths, f 1 and f 2, of the
lens L1 and L2 are set to be 25 and 200 mm, respec-
tively. We set d1, the distance between the sample
and the lens L1, to be 25 mm. The group 4 elements
2–5 of USAF1951 resolution target are used to sim-
ulate the amplitude of the sample, as shown by
Fig. 2(a). The field of view is 780 μm × 780 μm. The
pixel pitch is 3.9 μm. A random phase noise ranging

from −π to π simulates the phase distribution of the
sample, as illustrated by Fig. 2(b). All the phase
profiles throughout this paper are displayed in
blue-white-red color map that corresponds to �−π; π�.
The wavelength of the laser beam is set to be
0.633 μm. We present three simulation samples, cor-
responding to three different combinations of d2 and
d3. In the first case, d2 is set to be 200 mm and d3 to
be 150 mm. Then γ is calculated as 150 mm, accord-
ing to Eq. (2), and Φq becomes unity. The CCD is put
at a defocus plane of the sample. The defocus term
Φd is given by Eq. (5). The simulation results are
presented in Fig. 2. Figure 2(c) is the undistorted
but defocused field at the CCD plane when no aber-
ration is added at the pupil plane. The sampling
spacing of the spatial frequency in either direction
is 0.031 line pairs/mm. For the purpose of compari-
son, we propagate it to the image plane. The undis-
torted focused image is shown in Fig. 2(d). Figure 2(e)
shows the simulated phase aberration Φ added
at the pupil plane, which is given by two sixth-
order Zernike polynomials 4π�Z2

6 � Z4
6� � 4π�15r6

−20r4 � 6r2��cos�2θ� � sin�2θ��. From the full-field
hologram, we can retrieve the field at the CCD plane
that is distorted by this added phase aberrationΦ, as
shown in Fig. 2(f). Propagating this distorted field to
the focal plane, we can obtain the focused but de-
graded image, as shown by Fig. 2(g). Taking FT of
the distorted field shown by Fig. 2(f) results in the

Fig. 2. Simulation example where the defocus term Φd exists and the global quadratic phase term Φq is unity. (a),(b) Simulated am-
plitude and phase. The phase maps are represented by blue-white-red color map that corresponds to �−π; π�. (c) Optical field at the CCD
plane without aberrator in place. (d) Focused image of (c). (e) Simulated phase aberrationΦ. (f) Full-field aberrated hologram at the CCD
plane. (g) Focused image of (f). (h) Full-field phase profile at the pupil with aberration. (i) Guide-star hologram, i.e., the amplitude PSF of
the system. (j) General pupil function that is the FT of (i). (k) Corrected field at the pupil. (l) Corrected image from (k).
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distorted field at the pupil, which contains both the
added aberration Φ and the defocus term Φd, as
shown in Fig. 2(h). The spatial sampling spacing of
this distorted field is 21 μm. From the guide-star
hologram, the amplitude PSF of the system is ob-
tained, which is shown in Fig. 2(i). The general pupil
function that is the FTof the amplitude PSF is shown
in Fig. 2(j). The root mean square (RMS) measure-
ment error of the phase of the general pupil function
is 0.97 rad that corresponding to about 0.15 wave-
lengths. Subtracting Fig. 2(j) from Fig. 2(h), we can
get the corrected field at the pupil, which is given
by Fig. 2(k). As described by Eq. (16), the corrected
image can be obtained by taking IFT of Fig. 2(k),
which is shown in Fig. 2(l). Compared to the defo-
cused and distorted field in Fig. 2(f), the correlation
operation eliminates the aberration and meanwhile
automatically focuses the corrected field.

In the second case, d2 is set to be 300 mm and d3 to
be 200 mm. The defocus term Φd becomes unity,
which signifies the CCD is at the image plane of
the sample. However, in this scheme, the global
quadratic phase term Φq is not unity, which is given
by Eq. (9). The simulation results are shown in Fig. 3.
The baseline image, without aberration in place, is
shown in Fig. 3(a). Figure 3(b) shows the image dis-
torted by the aberration Φ illustrated in Fig. 2(e).
Figure 3(c) shows the affected field at the pupil.
The amplitude PSF of this system is shown in
Fig. 3(d). The measured aberration at the pupil is
given by Fig. 3(e). The RMS measurement error of
the phase of the general pupil function is 0.91 rad
that corresponding to about 0.14 wavelengths.
Figure 3(f) illustrates the corrected image that shows
remarkable improvement in resolution and quality,
compared to the distorted image in Fig. 3(b). In this
case, removal of the quadratic phase term Φq before
the correlation operation is found to be of significance

in the correction. The effect of this term on the cor-
rected image is shown in Fig. 4. Figure 4(a) shows the
measured aberration at the pupil when Φq is not
eliminated before the correlation operation, and
Fig. 4(c) illustrates the corresponding corrected im-
age, which is much degraded compared to Fig. 3(f),
that is obtained with Φq removed. If Φq is partially
removed, the recovered image becomes better, com-
pared to that with Φq untreated. Figure 4(b) shows
the measured aberration at the pupil when Φq is

Fig. 3. Simulation example where Φq exists while Φd is unity. (a) Undistorted optical field at CCD plane. (b) Distorted field at the CCD
plane. (c) Distorted field at the pupil. (d) Amplitude PSF of the system. (e) General pupil function. (f) Corrected image.

Fig. 4. Demonstration of the effect of Φq on the corrected image.
(a) Measured aberration at the pupil when Φq is not eliminated.
(b) Measured aberration at the pupil when Φq is partially elimi-
nated. (c) Image corrected by (a). (d) Image corrected by (b).
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partially eliminated, and Fig. 4(d) shows the
corresponding corrected image.

The third simulation sample demonstrates a gen-
eral case where bothΦq andΦd exist. In this case, we
set d2 to be 300 mm and d3 to be 150 mm. The sim-
ulation results are shown in Fig. 5. Figure 5(a) shows
the distorted full field at the CCD plane that is de-
focused and distorted. Note that the quadratic phase
term Φq has been eliminated. The focused but dis-
torted image is shown in Fig. 5(b). The distorted field
at the pupil is given by Fig. 5(c), which includes the
added aberrationΦ and defocus termΦd. The ampli-
tude PSF of this system is shown in Fig. 5(d). Again,
the quadratic phase term Φq has been eliminated.

Fig. 5. Simulation example where both Φq and Φd exist. (a) Distorted optical field at the CCD plane. (b) Distorted image. (c) Distorted
field at the pupil. (d) Amplitude PSF of the system. (e) General pupil function. (f) Corrected image.

Fig. 6. Schematic diagram of the experimental apparatus. S,
sample; L1–L3, lens; A, aberrator; BS1-4, beam splitters.

Fig. 7. Experimental example where the defocus termΦd exists while the global quadratic phase termΦq is unity. (a) Hologram without
aberration. (b) Amplitude at the CCD plane. (c) Undistorted field at the pupil. (d) Undistorted image. (e) Distorted hologram. (f) Distorted
field at the CCD plane. (g) Distorted field at the pupil. (h) Distorted image. (i) Guide-star hologram. (j) Amplitude PSF of the system.
(k) General pupil function. (l) Corrected image.
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The FT of this amplitude PSF is given by Fig. 5(e)
that includes Φ and Φd. The RMS measurement
error of the phase map represented by Fig. 5(e) is
0.88 rad that corresponding to about 0.14 wave-
lengths. Removing Fig. 5(e) from Fig. 5(c) and taking
IFT, we can get the corrected image shown in
Fig. 5(f). The resolution is completely recovered
and the defocus is eliminated.

4. Experimental Results and Discussions

The schematic diagram of the experimental setup is
illustrated in Fig. 6. The focal length f 1 of the lens L1
is 25 mm. S represents the sample plane that is at
the back focal plane of eye lens E. Hence, d1 equals
25 mm. The phase aberrator A is close to the pupil of
the lens L1. The focal length f 2 of L2 is 200 mm. The
CCD has 1024 × 768 pixels with the pixel pitch
6.45 μm. In our experiments, He–Ne laser is used
as light source. The sample under test is a positive
USAF 1951 resolution target with a piece of Teflon
tape tightly attached behind. The specular reflection
is blocked by the pupil whose size is set to be 5 mm in
diameter, and the CCD receives the diffuse scattered
light from the Teflon tape. A piece of clear broken
glass serves as the phase aberrator. The Lens L3
is inserted for full-field illumination. Corresponding
to the three simulation cases, we present three exper-
imental examples by choosing different values of d2
and d3. In the first example, we set d2 to be 200 mm
and d3 to be 150 mm, which indicates the CCD is at a
defocus plane of the sample. The defocus term Φd is
calculated by Eq. (5). According to Eq. (9), the quad-
ratic phase term Φq becomes unity. A set of image
data is shown in Fig. 7. The field of view on the sam-
ple plane is 594 μm× 445 μm. The full-field holo-
gram, without the aberrator in place, is shown in
Fig. 7(a). By the holographic process, the complex op-
tical field at the CCD plane can be achieved, which is
shown in Fig. 7(b) [15–19]. The sampling spacing of
the spatial frequency at the CCD plane is 0.037 line
pairs/mm in either direction, according to Eq. (19).
Taking FT of this field, the full optical field at the

pupil is obtained, as shown in Fig. 7(c). According
to Eq. (20), the spatial sampling spacings along
the horizontal and vertical directions are 27 and
35 μm, respectively. For the purpose of comparison,
we propagate this defocused field at the CCD plane
illustrated by Fig. 7(b) to the image plane, and obtain
the undistorted focused image shown in Fig. 7(d),
serving as a baseline. The distorted full-field holo-
gram is shown in Fig. 7(e), from which we can get
the distorted and defocused field at the CCD plane,
as shown in Fig. 7(f). The distorted full field at the
pupil is shown in Fig. 7(g), which contains the added
aberration and the defocus term. Figure 7(h) is the
distorted image. The guide-star hologram is shown
in Fig. 7(i), from which we obtain the amplitude
PSF of the system that is illustrated by Fig. 7(j).
Figure 7(k) shows the general pupil function. Sub-
tracting Fig. 7(k) from Fig. 7(g), we get the corrected

Fig. 8. Experimental example whereΦq exists whileΦd takes unity. (a) Undistorted image. (b) Distorted image. (c) Distorted full field at
the pupil. (d) Amplitude PSF of the system. (e) Measured aberration. (f) Corrected image.

Fig. 9. Experimental demonstration of the effect ofΦq on the cor-
rected image. (a) Measured aberration at the pupil whenΦq is not
eliminated. (b) Measured aberration at the pupil when Φq is par-
tially eliminated. (c) Image corrected by (a). (d) Image corrected
by (b).
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field at the pupil. As described by Eq. (16), the cor-
rected image can be obtained by taking IFT of this
corrected field, which is shown in Fig. 7(l). Compared
to the defocused and distorted field in Fig. 7(f), the
correlation operation eliminates both the aberration
and the defocus term.

In the second example, we set d2 to be 150 mm and
d3 to be 200 mm, which indicates the CCD is at the
image plane of the sample. The defocus term Φd dis-
appears while the quadratic phase term Φq exists.
Figure 8(a) shows the baseline image. The distorted
image is illustrated by Fig. 8(b). Figure 8(c) shows
the distorted full field at the pupil. The amplitude
PSF of the system is illustrated by Fig. 8(d).
Figure 8(e) is the measured aberration at the pupil.
The recovered image is shown in Fig. 8(f). The reso-
lution and contrast are almost completely recovered.
Note that the quadratic phase term Φq has to be re-
moved before the correlation operation. The effect of
this term on the corrected image is also demon-
strated in this example, shown in Fig. 9. Figure 9(a)
shows the measured aberration at the pupil whenΦq
is not eliminated before the correlation operation,
and Fig. 9(c) shows corresponding corrected image,
which is rather blurred compared to Fig. 8(f). When
Φq is partially removed, the recovered image be-
comes better. Figure 9(b) shows the measured aber-
ration at the pupil when Φq is partially eliminated
and Fig. 9(d) shows the corresponding corrected
image.

For the third experimental sample, d2 is 150 mm
and d3 250 mm. This is a general case where bothΦq
and Φd exist. The results are shown in Fig. 10.
Figure 10(a) shows the distorted field at the CCD
plane that is defocused and distorted. Note that the
quadratic phase term Φq has been eliminated. The
focused but distorted image is shown in Fig. 10(b).
The distorted full field at the pupil is given by
Fig. 10(c). The amplitude PSF of this system is illus-
trated by Fig. 10(d). Its FT is shown in Fig. 10(e).
Subtracting Fig. 10(e) from Fig. 10(c) and taking
IFT, we can get the corrected image that is shown

in Fig. 10(f). The resolution is completely recovered
and the defocus is eliminated.

5. Conclusions

In summary, a novel correction method is proposed
for the DHAO system. It is realized through the cor-
relation between the complex full-field hologram and
complex guide-star hologram. By this method, both
the aberration at the pupil and the defocus of the sys-
tem can be removed, which means it is not necessary
to further propagate the corrected full field to the im-
age plane, wherever the CCD is. It is worth noting
that if the global phase term Φq does exist, it has to
be removed before the correlation operation. Other-
wise, the aberrations cannot be correctly compen-
sated for. Although our derivation is based on a
two-lens system, the conclusion can be generalized
to any optical system, if the optical aberrations of
the system mainly lie at or close to the pupil plane.
It generalizes the FTDHAO into arbitrary DHAO
systems and provides us a guidance to design new
experimental schemes for applications in AO in oph-
thalmology and microscopy. The measurement error
of the phase aberration is due mainly to the deviation
of the guide-star spot from the ideal point source. The
size of the incident beam at the pupil in the first pas-
sage for the guide-star hologram is usually set to be
about 2 mm in diameter to minimize the effect of the
aberration and generate a sharp guide star. From
simulations and experiments, this error does exist
but is not severe. Also, coherent noise seems inevi-
table if laser is used as the light source. This can
be addressed by use of low coherent light source
[21,22,25].

Research reported in this paper was supported by
the National Eye Institute of the National Institutes
of Health under Award No. R21EY021876. The con-
tent is solely the responsibility of the authors and
does not necessarily represent the official views of
the National Institutes of Health.

Fig. 10. Experimental example where both Φq and Φd exist. (a) Distorted optical field at CCD plane. (b) Distorted image. (c) Distorted
field at the pupil. (d) Amplitude PSF of the system. (e) Phase map of the FT of (d). (f) Corrected image.
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