Problem 1

Study completely the following functions (Find the domain, intercepts with the coordinate axes, symmetries, asymptotes, intervals of monotonicity and concavity, local max/min, inflection points and finally sketch the graph.)
(1) $f(x)=\frac{x+1}{x^{2}}$
(2) $\quad f(x)=\ln \left(x^{2}-4\right)$

Problem 2

Compute the following limits
(3) $\lim _{x \rightarrow+\infty} \frac{\sqrt{4+x^{2}}}{9 x}$
(4) $\lim _{x \rightarrow 3} \frac{x^{3}-3 x^{2}-2 x+6}{x^{2}-3 x}$
(5) $\lim _{x \rightarrow+\infty} \frac{\cos \left(x^{3}\right)}{x^{2}}$
(6) $\lim _{x \rightarrow+\infty} \ln (x)-x$
(7) $\lim _{x \rightarrow 0} \frac{\cos (3 x)-1}{\sin (7 x)}$
(8) $\lim _{x \rightarrow+\infty} x \operatorname{tg}\left(\frac{1}{x}\right)$
(9) $\lim _{x \rightarrow+\infty}\left(1-\frac{2}{3 x}\right)^{x}$
(10) $\lim _{x \rightarrow 0^{+}}(\sqrt{x})^{3 x}$
(11) $\lim _{x \rightarrow 0} \frac{\int_{0}^{3 x} e^{t} \cos (2 t) \mathrm{d} t}{\operatorname{tg}(6 x)}$
(12) $\lim _{x \rightarrow 0} \frac{\int_{0}^{x^{4}} e^{t^{2}} \mathrm{~d} t}{\int_{0}^{x^{2}} e^{t} t \mathrm{~d} t}$

Problem 3

Do the following equations admit any real solutions? How many?
(13) $\sqrt{1-x^{2}}=x$
(14) $x^{5}-x=2$
(15) $x^{4}-x+2=0$

Problem 4

Compute the derivatives of the following functions

$$
\begin{align*}
& f(x)=\frac{\operatorname{arctg}\left(x^{2}\right)}{e^{-x}} \tag{16}\\
& f(x)=\sqrt[4]{\ln (x)} \tag{17}\\
& f(x)=\arcsin \left(\frac{3 x}{x+1}\right) \tag{18}\\
& f(x)=\operatorname{tg}^{5}\left(3 x^{2}\right) \tag{19}\\
& f(x)=(x-2)^{\sin (x)} \tag{20}\\
& f(x)=\int_{1}^{x}|\sin (t)| \mathrm{d} t \tag{21}\\
& f(x)=\int_{0}^{x^{2}+x} \frac{\operatorname{arctg}(t)}{1+t^{2}} \mathrm{~d} t \tag{22}\\
& f(x)=\int_{-x}^{x^{2}} e^{t^{2}} t^{5} \mathrm{~d} t \tag{23}
\end{align*}
$$

Problem 5

A) Determine the equation of the tangent line to the graph of the function $y=\operatorname{arctg}(x)$ at $x=1$.
Find all points where the tangent is horizontal.
B) Determine the equation of the tangent line to the curve $x^{3}-\sin (y)+x y=8$ at the point $(2,0)$.
${ }^{*}$)Are there any points where the tangent is horizontal?
C) Among all triangles inscribed in a semicircumference of radius 1 in such a way that one side coincides with the diameter find the one that has maximum area. Is there a triangle with minimum area?
D) We want to construct a box in the shape of a parallelepiped whose base length is 3 times the base width. The material used to build the top and bottom costs $10 \$ / f t^{2}$ and the material used to build the sides costs $6 \$ / f t^{2}$. If the box must have a volume of $50 f t^{3}$ determine the dimensions that will minimize the cost to build the box.
E) Find the points on the ellipse $x^{2}+\frac{y^{2}}{4}=1$ that are furthest away from $(1,0)$.
F) Air is being pumped into a spherical balloon at a rate of $1 \mathrm{~cm}^{3} / \mathrm{s}$. How fast is the radius increasing when the volume is $5 \mathrm{~cm}^{3}$?
G) The top of a ladder slides down a vertical wall at a rate of $1 \mathrm{~cm} / \mathrm{s}$. At the moment when the bottom of the ladder is 10 cm away from the wall, it slides away from the wall at a rate of $2 \mathrm{~cm} / \mathrm{s}$. How long is the ladder?
H) A ball is thrown in the air from a height of 1 ft with initial velocity $\frac{1}{2} \mathrm{ft} / \mathrm{s}$. (We ignore air resistance). What is the maximum height it will reach? What would the inizial velocity have to be in order for the ball to reach the top of a building 50 ft tall?

Problem 6

Compute the following integrals
(24) $\int_{-1}^{1} e^{-3 x}-\frac{3}{1+x^{2}} \mathrm{~d} x$
(25) $\int_{0}^{1} \frac{2}{\sqrt{10-2 x^{2}}}$
(26) $\int x^{2} \cos (2 x) \mathrm{d} x$
(27) $\quad \int x \cos \left(x^{2}\right) \mathrm{d} x$
(28) $\int \frac{1}{x \sqrt{\ln (x)}} \mathrm{d} x$
(29) $\quad \int x \operatorname{arctg}(2 x) \mathrm{d} x$
(30) $\quad \int e^{\sin (x)} \cos (x) \mathrm{d} x$
(31) $\quad \int \sin ^{5}(x) \mathrm{d} x$
(32) $\quad \int \sec ^{2}(x) \operatorname{tg}^{4}(x) \mathrm{d} x$
(33) $\int \frac{6 x+3}{x^{2}+x-1} \mathrm{~d} x$
(34) $\int \frac{\arcsin (x)}{\sqrt{1-x^{2}}}$
(35) $\int x e^{-2 x} \mathrm{~d} x$
(36) $\int \frac{x^{3}}{1+x^{8}} \mathrm{~d} x$
(37) $\quad \int \frac{x^{7}}{1+x^{8}} \mathrm{~d} x$
(38) $\int \frac{1}{\sqrt{x}(1+\sqrt{x})} \mathrm{d} x$
(39) $\int \frac{1}{1+\sqrt{x}} \mathrm{~d} x$

