PRACTICE SET FOR MIDTERM 1

Problem 1

Find the natural domain and the horizontal/vertical asymptotes of the following functions
(1) $\quad f(x)=\frac{x+1}{x^{2}}$
(2) $\quad f(x)=e^{\frac{1}{x^{2}-9}}$
(3) $\quad f(x)=\operatorname{arctg}\left(\frac{x^{3}+4}{x^{3}}\right)$
(4) $\quad f(x)=\ln \left(\frac{3 x-1}{x-2}\right)$
(5) $\quad f(x)=\frac{\cos \left(x^{2}\right)}{x^{2}+1}$

Problem 2

Compute the following limits if they exist or prove that they don't exist
(6) $\lim _{x \rightarrow+\infty} \frac{3 e^{4 x}+1}{e^{x}-e^{4 x}}$
(7) $\lim _{x \rightarrow 0} \frac{2-\sqrt{4+x^{2}}}{9 x^{2}}$
(8) $\lim _{x \rightarrow 0} \frac{\frac{10}{3+2 x}-\frac{10}{3}}{x^{2}-2 x}$
(9) $\lim _{x \rightarrow-\infty} \cos (4 x) \cdot e^{-x^{2}}$
(10) $\lim _{x \rightarrow+\infty} \sin (x) \cdot \frac{x}{x^{2}-2}$
(11) $\lim _{x \rightarrow 0} \frac{\left|x^{3}\right|}{x^{3}-x}$
(12) $\lim _{x \rightarrow-1} \frac{2 x+2}{|x+1|}$
(13) $\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}+1}}{7 x} \quad$ (tricky)

Problem 3

Are the following functions continuous? If not classify the type of discontinuity they exhibit.
(14) $f(x)=\sqrt{x^{6}+x^{4}+2}$
(15) $\quad f(x)=\left|x^{2}-4\right|$
(16) $f(x)=\left\{\begin{array}{l}\frac{x+1}{x-2} \text { for } x>2 \\ x^{3}-1 \text { for } x \leq 2\end{array}\right.$

$$
f(x)=\left\{\begin{array}{l}
e^{-\frac{1}{x^{2}}} \quad \text { for } \quad x \neq 0 \tag{17}\\
1 \quad \text { for } \quad x=0
\end{array}\right.
$$

Do the following equations admit any real solutions?

$$
\begin{align*}
& \ln (x-1)+\ln (x)=1 \tag{18}\\
& x^{5}-x=2 \\
& \operatorname{arctg}(x)=x^{3}-x \\
& e^{x}+x^{2}+2=0
\end{align*}
$$

Problem 4

Compute the derivatives of the following functions

$$
\begin{align*}
& f(x)=\left(x^{3}-3 x^{2}+1\right) \cos \left(3 x^{2}\right) \tag{22}\\
& f(x)=\frac{\operatorname{arctg}\left(x^{2}\right)}{e^{-x}} \\
& f(x)=\sqrt[4]{x^{6}-2} \\
& f(x)=\arcsin \left(\frac{3}{x^{3}}\right) \\
& f(x)=\sin ^{5}(3 x) \\
& f(x)=\left(x^{5}+1\right)^{2 x-1}
\end{align*}
$$

Problem 5

Find $\frac{d y}{d x}$ for the functions implicitly defined by the following equations

$$
\begin{align*}
& x^{2}=y^{3}-2 x \tag{28}\\
& \cos (y)=x y^{2}+2 \tag{29}\\
& \ln (x y)=x+y \\
& \arcsin \left(y^{2}\right)=e^{x+y}
\end{align*}
$$

Problem 6

32) Determine the equation of the tangent line to the graph of the function $y=\ln (x)$ at $x=1$.
Is there a point where the tangent is parallel to the line $y=3 x-1$?
Is there a point where the tangent is horizontal?
33) Determine the equation of the tangent line to the ellipse of horizontal semi-axis 3 and vertical semi-axis 4 at the point $\left(\sqrt{5}, \frac{8}{3}\right)$.
Are there any points where the tangent to the ellipse is horizontal?
34) Is the line $y=-x+2$ tangent to the graph of the function $y=\ln \left(x^{2}+1\right)$?
35^{*}) Suppose $f(x) \leq x \cos \left(\frac{1}{\sqrt{x}}\right)$ for all $x>0$. Can we compute $\lim _{x \rightarrow 0^{+}} f(x)$?
What if $|f(x)| \leq x \cos \left(\frac{1}{\sqrt{x}}\right)$ for all $x>0$?
$\left.36^{* *}\right)$ Does there exist a common tangent to the curves $y=e^{x}$ and $y=-x^{2}$?
