PRACTICE SET FOR MIDTERM 2

A)Carefully study the examples solved in class.

B)Do the practice problems from sections :
2.7 (Related Rates)
3.7 (L'Hospital's rule)
4.1 (Max/Min)
4.2 (Theorems about differentiable functions)
4.4 (Curve Sketching)
4.5 (Optimization Problems)
C) Do the following equations admit any real solutions? If so, how many?

1) $x^{5}+\frac{1}{3} x^{3}=3-e^{x}$
2) $2 x^{5}+5 x^{4}-3=0$
$3 *) \operatorname{arctg}(x)=\frac{1}{4} x^{4}+\frac{1}{3} x^{3}+\frac{25}{12}$
4*) $x^{2}=\sin (x)$
D) Prove that $\ln (x+1) \leq x$ for every $x>-1$.
E) Suppose $f: \mathbb{R} \longrightarrow \mathbb{R}$ is a function such that $f^{\prime}(x)<0 \quad \forall x \in \mathbb{R}$ and such that $\lim _{x \rightarrow-\infty} f(x)=+\infty$. Is it true that the equation $f(x)=0$ has exactly one real solution?

F $\left.^{*}\right)$ Can you find a differentiable function $f: \mathbb{R} \longrightarrow \mathbb{R}$ such that $\mathrm{f}(5)=5, \mathrm{f}(-5)=-5$ and $f^{\prime}(x) \geq x^{2}+2$?
$\left.\mathrm{G}^{*}\right)$ Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be an even and differentiable function. Assuming the derivative is a continuous function, compute

$$
\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{\sin (x)}
$$

$\left.\mathrm{H}^{*}\right)$ Let $f: \mathbb{R} \longrightarrow \mathbb{R}$. Suppose that $f(0)=1, f^{\prime}(0)=5$ and $f^{\prime \prime}(x)<0$ for every $x \in \mathbb{R}$. Prove that $f(x) \leq 5 x+1$ for every $x \in \mathbb{R}$.

