Problem 1

Solve the following integrals
(1) $\quad \int(x-1) \sin x \mathrm{~d} x$
(2) $\int \frac{\sin ^{3} x}{1+\cos ^{2} x} \mathrm{~d} x$
(3) $\quad \int \frac{\sec (\ln x) \tan (\ln x)}{x} \mathrm{~d} x$
(4) $\quad \int e^{\sqrt{x}} \mathrm{~d} x$
(5) $\int \frac{5-2 x}{x^{3}-4 x^{2}+4 x} \mathrm{~d} x$
(6) $\int \frac{x^{2}+2 x}{x^{3}-1} \mathrm{~d} x$
(7) $\int \frac{\sqrt[3]{x^{2}}-1}{x} \mathrm{~d} x$
(8) $\quad \int\left(\tan ^{5} x+1\right) \sec ^{4} x \mathrm{~d} x$
(9) $\quad \int \arcsin (2 x) \mathrm{d} x$
(10) $\int \sin ^{2} x \cos ^{2} x \mathrm{~d} x$
(11) $\int \frac{e^{x}}{\sqrt{1-e^{2 x}}} \mathrm{~d} x$
(12) $\int \frac{\ln (\arctan x)}{1+x^{2}} \mathrm{~d} x$
(13) $\int e^{\frac{x}{2}} \sin x \mathrm{~d} x$
(14) $\int \sqrt{1-4 x^{2}} \mathrm{~d} x$
(15) $\int x^{2} e^{-3 x^{3}} \mathrm{~d} x$
(16) $\quad \int\left(x^{3}-1\right) \ln x \mathrm{~d} x$
(17) $\quad \int x \arctan (1+x) \mathrm{d} x$
(18) $\quad \int_{1}^{\infty} \frac{1}{2 x^{2}+x-1} \mathrm{~d} x$
(19) $\quad \int_{0}^{\infty} \frac{1}{5+x^{2}} \mathrm{~d} x$
(20) $\quad \int_{0}^{\infty} e^{-x} \sqrt{e^{-x}+3} \mathrm{~d} x$
(21) $\int_{0}^{\frac{1}{2}} \frac{1}{x \ln ^{2} x} \mathrm{~d} x$

Problem 2

1) Find the area between the curves $y=x-x^{2}$ and $2 y+1=x$.
2) Find the area between the curves $y=|x|-1$ and $2 y=x$.
3) Find the length of the curve given by the graph of the function $y=\frac{x^{4}}{8}+\frac{1}{4 x^{2}}, 1 \leq x \leq 2$.
2)Find the volume of the solid obtained by rotating the region between the curves $y=x^{3}$,
$y=\sqrt{x}$ around the line $x=1$. Same question but rotating around $y=1$
3)Find the volume of the solid obtained by rotating the region between the curves $y=e^{-x^{2}}, y=0, x=0$ and $x=1$ around the y axis.

Problem 3

1)A tank has the shape of the solid obtained by rotating the region between the curves $y=e^{x}-1, x=0$ and $y=1$ around the y axis. The tank contains a liquid with density ρ kg / m^{3}. Find the work required to empty the tank by pumping all the liquid to the top.
2) Determine the force due to hydrostatic pressure on the flat vertical side of a tank which has the shape of the region enclosed by the curves $y=4$ and $y=x^{2}$ if the liquid contained has density $\rho \mathrm{kg} / m^{3}$. (The acceleration of gravity is $g \mathrm{~m} / s^{2}$, you can leave the constants without substituting their numerical value).

Problem 4

1) Determine the coordinates of a point R in the x axis in such a way that the triangle $P Q R$ is isosceles, where $P=(1,2), Q=(-3,1)$. Compute its area and the amplitude of its internal angles. How many points satisfy that condition?
2) Determine the coordinates of a point R in the x axis in such a way that the triangle $P Q R$ is a right triangle, where $P=(1,2), Q=(-3,1)$. Compute its area and the amplitude of its internal angles. How many points satisfy that condition?
3) Determine the coordinates of a point R in such a way that the triangle $P Q R$ is equilateral, where $P=(0,1,2), Q=(-3,0,1)$. Compute its area. Find the equation of the plane containing it. How many points satisfy that condition?
4)Find a unit vector \vec{v} perpendicular to the plane passing through $A=(1,0,0)$,
$B=(-1,1,2)$ and the origin. Find the equation of the line parallel to \vec{v} and passing through the point $C=(2,1,1)$.
4) Are the planes $2 x-2 y=z$ and $x-y+z=2$ parallel?If not, find the angle between them.
5) Find the equation of the line passing through the origin and perpendicular to the plane $x+2 y=z$.
7)Find the equation of the plane passing through the center of the sphere
$x^{2}+y^{2}+z^{2}-x+2 y-8 z=0$ and containing the line $-x+3=2+y=3 z$.
8)Find the equation of the sphere passing through the origin and with center
$C=(1,-1, \sqrt{2})$. Find the equation of the plane tangent to the sphere at the origin.
