PRACTICE SET (PART 2)

Problem 1

1) Find an equation of the line passing through the origin and parallel to the tangent to the curve $x=t^{2}+t, y=t^{3}-1$ at the point $(2,0)$.
2) Find a parametrization of the circle with center $C=(1,0)$ and radius 3 starting from $(1,3)$ and going anticlockwise. Find an equation of the tangent at the point $(4,0)$.
3) Find a parametrization of the ellipse centered at the origin with horizontal semiaxis 2 and vertical semiaxis 3 in anticlockwise direction starting from $(2,0)$.
4) Find the length of the curve $x=e^{2 t} \sin (2 t), y=e^{2 t} \cos (2 t)$ for $0 \leq t \leq \pi$.

Problem 2

1) Find the area enclosed by one petal of the following curves

$$
\begin{aligned}
\text { a) } r & =\cos (3 \theta) \\
b) r & =\sin (4 \theta)
\end{aligned}
$$

2) Find the area of the region outside the curve $r=2+2 \sin \theta$ and inside the curve $r=6 \sin \theta$

Problem 3

Determine if the following sequences have a limit and in this case compute it.
(1) $a_{n}=\left(1-\frac{1}{2 n}\right)^{n}$
(2) $a_{n}=\left(\frac{n+3}{n}\right)^{2 n}$
(3) $a_{n}=\left(\frac{n}{n+1}\right)^{n}$
(4) $a_{n}=\left(\frac{1}{n^{2}}\right)^{\frac{1}{n}}$
(5) $\quad a_{n}=\sqrt{n} \log n$
(6) $a_{n}=\frac{2 n-3}{n+2} \sin n$
(7) $a_{n}=\frac{\sin \left(\frac{1}{n}\right)}{n}$
(8) $a_{n}=n \sin \left(\frac{1}{n}\right)$
(9) $\quad a_{n}=(-1)^{n} \frac{\sqrt{n}}{1-n}$
(10) $\quad a_{n}=(-1)^{n}\left(1+\frac{2}{n}\right)^{n}$

$$
\begin{equation*}
a_{n}=\frac{n^{2}+1}{3 n^{3}-n} \tag{11}
\end{equation*}
$$

$$
\begin{equation*}
a_{n}=\frac{\sqrt[3]{5 n+1}}{\sqrt[6]{n^{2}+n}} \tag{12}
\end{equation*}
$$

Problem 4

Study the convergence of the following series (absolute-conditional convergence, divergence)
(13) $\sum_{n=1}^{\infty} \frac{\sqrt{3 n^{5}+n}}{n^{2}+\sqrt{n}}$
(14) $\sum_{n=1}^{\infty} \frac{\sqrt[3]{n^{6}+3 n}}{3 n+n^{3}}$
(15) $\quad \sum_{n=1}^{\infty} \frac{\sqrt{\sqrt{n}+1}}{n \sqrt{n}}$
(16) $\sum_{n=2}^{\infty} \frac{1}{n \log ^{3} n}$
(17) $\quad \sum_{n=1}^{\infty} \frac{\log n}{n^{2}}$
(18) $\sum_{n=1}^{\infty} \arctan n$
(19) $\quad \sum_{n=1}^{\infty}(-1)^{n} \frac{2^{n}}{n!}$
(20) $\quad \sum_{n=1}^{\infty} \frac{(-1)^{n}}{2 n+1}$
(21) $\quad \sum_{n=1}^{\infty}(-1)^{n} \frac{3 n-1}{5 n+6}$
(22) $\quad \sum_{n=1}^{\infty} \frac{n!}{2015^{n}}$
(23) $\sum_{n=2}^{\infty}\left(\frac{2 n^{3}+1}{n^{3}-1}\right)^{n}$
(24) $\quad \sum_{n=1}^{\infty}\left(\frac{n-1}{n}\right)^{n^{2}}$
(25) $\sum_{n=1}^{\infty} \frac{3^{n-1}}{2^{n}}$
(26) $\sum_{n=1}^{\infty} \frac{4^{1-n}}{3}$
(27) $\quad \sum_{n=1}^{\infty} \frac{(-5)^{n}}{2^{3 n}}$

Problem 5

Find the radius of convergence and interval of convergence of the following power series
(28) $\sum_{n=1}^{\infty} \frac{n^{2}(-1)^{n} x^{n}}{4^{n}}$
(29) $\sum_{n=1}^{\infty} \frac{n!x^{n}}{n^{2}}$
(30) $\quad \sum_{n=1}^{\infty} \frac{e^{n} x^{n}}{n!}$
(31) $\quad \sum_{n=2}^{\infty} \frac{(x-1)^{n}}{n^{2}+1}$
(32) $\quad \sum_{n=1}^{\infty}\left(1+\frac{1}{n}\right)^{n} x^{n}$

Problem 6

Express the following functions as power series (Indicate radius of convergence and interval of convergence)
(33) $\frac{1}{10-x}$
(34) $\frac{x}{5+x^{3}}$
(35) $\frac{x^{3}}{(1-x)^{2}}$
(36) $\arctan (4 x)$

Problem 7

Find the Taylor polynomial of degree 3 of the following functions
(37) $\sqrt[3]{x}$ centered at 1
(38) $\sin x$ centered at π

Problem 8

Find the general solution to the following ODEs
(39) $y^{\prime}=x e^{-y}$
(40) $y y^{\prime}+x y^{2}=4 x$
(41) $3 y^{\prime}+y=2 e^{-x}$
(42) $y^{\prime}-y \cos x=\frac{e^{\sin x}}{1+x^{2}}$
(43) $y^{\prime \prime}-2 y^{\prime}-3 y=e^{4 x}$
(44) $y^{\prime \prime}+y^{\prime}=x-x^{3}$

Problem 9

Find the solution to the following initial value problems
(45) $\quad y^{\prime}=\frac{y^{2}-1}{x y} \quad y(1)=1$
(46) $\quad y^{\prime}=2 \sqrt{y} \quad y(2)=2$
(47) $\quad y^{\prime}=y+x \quad y(1)=e-2$
(48) $y^{\prime \prime}+6 y^{\prime}+9 y=0 \quad y(0)=1, y^{\prime}(0)=2$
(49) $\quad y^{\prime \prime}+4 y=x \quad y(0)=0, y^{\prime}(0)=1$

Problem *

Solve the following integrals
(50) $\quad \int e^{x+e^{x}} \mathrm{~d} x$
(51) $\int \sqrt{\frac{1-x}{1+x}} \mathrm{~d} x$
(52) $\quad \int x \sqrt{1-x} \mathrm{~d} x$

