
PRACTICE SET (PART 2)

Problem 1
1) Find an equation of the line passing through the origin and parallel to the tangent to
the curve x = t2 + t, y = t3 − 1 at the point (2, 0).
2) Find a parametrization of the circle with center C = (1, 0) and radius 3 starting from
(1, 3) and going anticlockwise. Find an equation of the tangent at the point (4, 0).
3) Find a parametrization of the ellipse centered at the origin with horizontal semiaxis 2
and vertical semiaxis 3 in anticlockwise direction starting from (2, 0).
4) Find the length of the curve x = e2t sin(2t), y = e2t cos(2t) for 0 ≤ t ≤ π.

Problem 2
1) Find the area enclosed by one petal of the following curves

a)r = cos(3θ)

b)r = sin(4θ)

2) Find the area of the region outside the curve r = 2 + 2 sin θ and inside the curve
r = 6 sin θ

Problem 3
Determine if the following sequences have a limit and in this case compute it.
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Problem 4
Study the convergence of the following series (absolute-conditional convergence, divergence)
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Problem 5
Find the radius of convergence and interval of convergence of the following power series
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Problem 6
Express the following functions as power series (Indicate radius of convergence and interval
of convergence)
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Problem 7
Find the Taylor polynomial of degree 3 of the following functions
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Problem 8
Find the general solution to the following ODEs

y′ = xe−y(39)

yy′ + xy2 = 4x(40)

3y′ + y = 2e−x(41)
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Problem 9
Find the solution to the following initial value problems
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y′ = y + x y(1) = e− 2(47)

y′′ + 6y′ + 9y = 0 y(0) = 1, y′(0) = 2(48)

y′′ + 4y = x y(0) = 0, y′(0) = 1(49)
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Solve the following integrals∫
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