In-class Activity 2

Last Name: \qquad First Name: \qquad
Question 1 Compute the following limits:
(1) $\lim _{t \rightarrow 0} \frac{\sin (10 t)}{t}=$
(2) $\lim _{h \rightarrow 0} \frac{2 h}{\sin (5 h)}=$
(3) $\lim _{x \rightarrow 0} \frac{x^{2}}{\sin (x)}=$

Question 2 Compute the following limits, specifying if they result in $-\infty$ or $+\infty$:
(1) $\lim _{x \rightarrow 2^{-}} \frac{4}{x-2}=$
(2) $\lim _{u \rightarrow 3^{+}} \frac{u-1}{3-u}=$
(3) $\lim _{x \rightarrow 0^{+}} \frac{\cos (x)}{x}=$

Question 3 Compute the following limits. Interpret your answer geometrically in terms of asymptotes.
(1) $\lim _{x \rightarrow-\infty} \frac{3 x^{4}-x^{5}}{x+x^{5}}=$
(2) $\lim _{t \rightarrow-\infty} \frac{2 t}{t^{2}-1}=$
(3) $\lim _{x \rightarrow \infty} \frac{x^{10}}{x^{2}-3 x^{5}}=$

Question 4 Compute the following limits, if they exist, or write "Does not exist" and justify why. Quote any Theorems or Results you are using:
(1) $\lim _{x \rightarrow 0} x^{6} \sin \left(\frac{6}{x}\right)=$
(2) $\lim _{x \rightarrow \infty} \frac{\cos (x)}{x}=$
(3) $\lim _{x \rightarrow 0} \frac{2}{x} \sin (6 x)=$

Question 5 Find all horizontal and vertical asymptotes for the function $f(x)=\frac{x^{2}-2 x+1}{x^{2}-1}$

Question 6 Give an example of a function f that has asymptotes $x=0, y=1$ and such that $f(0)=5$.

Question * Compute the following limits if they exist, or write "Does not exist" and justify why:
(1) $\lim _{x \rightarrow 2} \frac{|x-2|}{x-2}=$
(2) $\lim _{u \rightarrow-3} \frac{u^{2}+6 u+9}{|u+3|}=$
(3) $\lim _{x \rightarrow 0} \frac{|x|-x}{2 x}=$

