In-class Activity 3

Last Name: \qquad First Name: \qquad

Question 1

Given below is the graph of the function $y=f(x)$.

Find all the points where f is discontinuous specifying the type of discontinuity (justify properly).

Question 2

Find all the points where the following functions are discontinuous, specifying the type of discontinuity (justify properly):

1) $f(x)=\cos \left(x^{2}-10\right)-5$
2) $g(x)= \begin{cases}3 & \text { if } x \leq-2 \\ \frac{x^{3}-x+1}{x+2} & \text { if }-2<x<1 \\ \frac{3}{9 x} & \text { if } x \geq 1,\end{cases}$

Question 3 Find the value of the parameter a that makes the following function continuous on $]-\infty,+\infty[$:

$$
f(x)=\left\{\begin{array}{lll}
a x^{2}-10 & \text { if } & x<-2 \\
\frac{a}{x+5} & \text { if } \quad x \geq-2
\end{array}\right.
$$

Question 4 Find the values of the parameters a and b that make the following function continuous on $]-\infty,+\infty[$:

$$
f(x)=\left\{\begin{array}{lll}
a x^{2}+b & \text { for } \quad x<-1 \\
b+4 & \text { for } \quad x=-1 \\
\cos (\pi x)+a & \text { for } \quad x>-1
\end{array}\right.
$$

Question 5 1) Prove that the equation $x^{7}=2 x^{6}+3 x^{2}-5$ has at least one real solution in the interval $[-1,0]$.
2) Does the equation $\sin (x)+x^{2}=1$ have any real solutions?

