In-class Activity 5

Question 1 Write the derivatives for the following elementary functions:

- $\frac{\mathrm{d}}{\mathrm{d} x} c=$
- $\frac{\mathrm{d}}{\mathrm{d} x} \cos (x)=$
- $\frac{\mathrm{d}}{\mathrm{d} x} x^{n}=$
- $\frac{\mathrm{d}}{\mathrm{d} x} e^{x}=$
- $\frac{\mathrm{d}}{\mathrm{d} x} \sin (x)=$
- $\frac{\mathrm{d}}{\mathrm{d} x} \ln (x)=$

Question 2 Given below are two functions $f(x)$ and $g(x)$, and a constant c. Complete the following differentiation formulas:

- $(f(x)+g(x))^{\prime}=$
- $(f(x)-g(x))^{\prime}=$
- $(c f(x))^{\prime}=$

Now use them to compute the derivatives of the following functions:

- $\left(3 x^{4}-2 x+1\right)^{\prime}=$
- $\left(\frac{3}{x^{3}}+\sqrt{x}+\ln (x)\right)^{\prime}=$
- $\left(\cos (x)-5 \sin (x)+\sqrt{2} e^{x}\right)^{\prime}=$
- $\left(\frac{x^{5}-x}{x^{2}}\right)^{\prime}=$

Question 3

Write the formula for the PRODUCT RULE:
$(f(x) g(x))^{\prime}=$
Now use it to compute the following derivatives:

- $\left(x^{6} \cos (x)\right)^{\prime}=$
- $\left(\left(3 x^{2}+1\right)\left(5 x^{3}-x^{2}+x-2\right)\right)^{\prime}=$
- $\left((\sqrt[3]{x}-1) e^{x}\right)^{\prime}=$

Question 4

Write the formula for the QUOTIENT RULE:

$$
\left(\frac{f(x)}{g(x)}\right)^{\prime}=
$$

Now use it to compute the following derivatives:

- $\left(\frac{x^{6}-3 x+1}{x^{3}-2}\right)^{\prime}=$
- $\left(\frac{\sin (x)+4 \ln (x)}{e^{x}+x^{3}}\right)^{\prime}=$
- $(\tan (x))^{\prime}=$

Question 5

Use all the rules learned so far to find the following derivatives:

- $(x \cos (x) \ln (x))^{\prime}=$
- $\left(\frac{x^{2}+1}{e^{x}(5 x-1)}\right)^{\prime}=$
- $(x \cot (x))^{\prime}=$

Question 6

Find the equation of the tangent line to the graph of the function $f(x)=x \ln (x)$ at the point where $x=e^{4}$.

