In-class Activity 6

Question 1 Complete the following differentiation formulas:

- $\frac{\mathrm{d}}{\mathrm{d} x} c=$
- $\frac{\mathrm{d}}{\mathrm{d} x} x^{n}=$
- $\frac{\mathrm{d}}{\mathrm{d} x} \sin (x)=$
- $\frac{\mathrm{d}}{\mathrm{d} x} \cos (x)=$
- $\frac{\mathrm{d}}{\mathrm{d} x} e^{x}=$
- $\frac{\mathrm{d}}{\mathrm{d} x} \ln (x)=$
- $\frac{\mathrm{d}}{\mathrm{d} x} \tan (x)=$
- $(f(x)+g(x))^{\prime}=$
- $(f(x)-g(x))^{\prime}=$
- $(c f(x))^{\prime}=$
- $(f(x) g(x))^{\prime}=$
- $\left(\frac{f(x)}{g(x)}\right)^{\prime}=$

Question 2

Write the formula for the CHAIN RULE:

$$
(f(g(x)))^{\prime}=
$$

Now use it to compute the following derivatives:

- $\left(\left(x^{6}+2 x+3\right)^{5}\right)^{\prime}=$
- $\left(e^{-10 x}\right)^{\prime}=$
- $\left(\sin \left(x^{6}+7\right)\right)^{\prime}=$
- $\left(\cos ^{9}(x)\right)^{\prime}=$
- $\left(\frac{1}{\ln (x)}\right)^{\prime}=$
- $\left(\sqrt{x^{3}-x+\sin (x)}\right)^{\prime}=$

Question 2

Complete the following formula for the generalized chain rule:

$$
(f(g(h(x))))^{\prime}=
$$

Now use it to compute the following derivatives:

- $\left(\sqrt[3]{e^{x^{2}-7}}\right)^{\prime}=$
- $\left(\sin ^{4}(3 x)\right)^{\prime}=$

Question 4

Compute the following derivatives by combining the appropriate rules:

- $\left(x^{3} e^{9 x}\right)^{\prime}=$
- $\left(\frac{e^{-x}+\ln (x)}{x \sin (\sqrt{x})}\right)^{\prime}=$
- $(\sec (x))^{\prime}=$

Question 5

Below is the graph of the function $s(t)=2 e^{-t} \sin (10 t)$ which describes the motion of a damped pendulum.

- Find the velocity function $v(t)$.
- Describe what happens to the motion of the pendulum after a very large period of time by employing limits at infinity. In particular compute $\lim _{t \rightarrow \infty} s(t)$ and $\lim _{t \rightarrow \infty} v(t)$.

