In-class Activity 7

Question 1 Complete the following differentiation formulas:

- $\frac{\mathrm{d}}{\mathrm{d} x} c=$
- $\frac{\mathrm{d}}{\mathrm{d} x} \sec (x)$
- $\frac{\mathrm{d}}{\mathrm{d} x} x^{n}=$
- $(f(x)+g(x))^{\prime}=$
- $\frac{\mathrm{d}}{\mathrm{d} x} \sin (x)=$
- $(f(x)-g(x))^{\prime}=$
- $\frac{\mathrm{d}}{\mathrm{d} x} \cos (x)=$
- $(c f(x))^{\prime}=$
- $\frac{\mathrm{d}}{\mathrm{d} x} e^{x}=$
- $(f(x) g(x))^{\prime}=$
- $\frac{\mathrm{d}}{\mathrm{d} x} \ln (x)=$
- $\left(\frac{f(x)}{g(x)}\right)^{\prime}=$
- $\frac{\mathrm{d}}{\mathrm{d} x} \tan (x)=$
- $(f(g(x)))^{\prime}$

Question 2

Given the following implicit relations between y and x, find $y^{\prime}(x)$:

- $y^{3}+3 x^{5}=10$
- $x^{3} y^{2}-y=3 e^{x}$
- $e^{x+y}+\sin x=\cos (y)$
- $x \sqrt{y}=\ln (y)+4$

Question 3

Above is the graph of the curve described by the equation $y^{3}=x^{2}+5 y+4 x$. This is an example of an elliptic curve, which are used in cryptography.
a) Draw the tangent line to the graph at the point $(-2,1)$.

- Find $y^{\prime}(-2)$.
- Use your answer above to find an equation of the tangent line to the graph of the curve at the point $(-2,1)$.
b) Find the equation of the tangent line to the graph of the curve at the point $(0,0)$.

Question 4

Above is the graph of the curve described by the equation

$$
\left(x^{2}+y^{2}\right)^{2}=6 x^{2}-y^{2}+2 .
$$

This curve is called hippopede (which means horse fetter in ancient greek).
a) Find the equation of the tangent line at the point $(2,1)$.
b) What do you notice if you try to compute $y^{\prime}\left(\frac{5}{2}\right)$? Can you find the equation of the tangent line at the point $\left(\frac{5}{2}, 0\right)$?

