In-class Activity 9

Question 1 A metallic disk is expanding under the influence of heat at a rate of $4 \mathrm{~cm}^{2} / \mathrm{s}$. At what rate is the radius increasing when the diameter is 8 cm ?

Question 2

Pikachu and Slowpoke are chatting when a pokemon trainer arrives and tries to capture them. Pikachu flees east at a constant speed of $10 \mathrm{~km} / \mathrm{h}$ while Slowpoke runs north at a constant speed of $1 \mathrm{~km} / \mathrm{h}$. At what rate is the distance between the two pokemon increasing after 30 minutes ?

Question 3

Queen bee is flying following the path described by the circle $x^{2}+y^{2}=4$. What is the x component of the velocity at the point $(\sqrt{2}, \sqrt{2})$ if the y component of the velocity is $1 \mathrm{~m} / \mathrm{s}$?

Question 4

A spherical balloon is deflating at a rate of $4 \pi i n^{3} / \mathrm{s}$. If the initial volume is $\frac{28}{3} \pi i n^{3}$, at what rate is the radius changing after 2 seconds?

Question 5

Above is the picture of an electrical circuit with two resistors R_{1} and R_{2} connected in parallel. By Ohm's law, the total resistance of the circuit R (measured in Ohms Ω) satisfies the following equation:

$$
\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}
$$

Suppose the resistances R_{1} and R_{2} are increasing over time at a rate of $9 \Omega / \mathrm{s}$ and $2 \Omega / \mathrm{s}$ respectively. At what rate is the total resistance R increasing when $R_{1}=\frac{3}{2} \Omega$ and $R_{2}=\frac{1}{3} \Omega$?

