FUNCTIONS: INTRODUCTION AND EXAMPLES

Diego Ricciotti

Calculus 1

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

LEARNING OBJECTIVES

By the end of this lesson you will be able to...

• Define functions and the associated concepts of Domain and Codomain

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Classify different types of elementary functions
- Compute the domain of such functions

TABLE OF CONTENTS

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Definition
- Examples

2 Elementary Functions

- Polynomial Functions
- Rational Functions
- Irrational Functions

WHAT IS A FUNCTION?

- A RULE that associates to each Input only 1 Output
- Input = Domain (D)
- Output = Codomain (C)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Definition Examples

EXAMPLES OF FUNCTIONS

Definition Examples

EXAMPLES OF FUNCTIONS

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - 釣��

Definition Examples

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

FUNCTIONS OF A REAL VARIABLE

- Domain $\subset \mathbb{R}$
- Codomain $\subset \mathbb{R}$
- GRAPH representation in the plane

Definition Examples

FUNCTIONS OF A REAL VARIABLE

- Domain $\subset \mathbb{R}$
- Codomain $\subset \mathbb{R}$
- GRAPH representation in the plane

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Polynomial Functions Rational Functions Irrational Functions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

POLYNOMIAL FUNCTIONS

Definition

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0,$$

Polynomial Functions Rational Functions Irrational Functions

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

POLYNOMIAL FUNCTIONS

Definition

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0,$$

- Domain $= \mathbb{R}$
- *n* is the DEGREE (integer)
- $a_n, a_{n-1}, ..., a_0$ are the COEFFICIENTS

Polynomial Functions Rational Functions Irrational Functions

POLYNOMIAL FUNCTIONS

Definition

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0,$$

- Domain $= \mathbb{R}$
- *n* is the DEGREE (integer)
- $a_n, a_{n-1}, ..., a_0$ are the COEFFICIENTS

$$f(x) = 2x - \frac{5}{3} \text{ degree 1}$$

$$f(x) = x + \sqrt{2}x^3 \text{ degree 3, not ordered}$$

$$f(x) = 3x^{-2} + 4x^5 \text{ NOT a polynomial! WHY?}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Polynomial Functions Rational Functions Irrational Functions

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

SPECIAL POLYNOMIALS: LINEAR

LINEAR POLYNOMIAL=DEGREE 1

Special notation: $\mathbf{y} = \mathbf{m}\mathbf{x} + \mathbf{q}$

- represents a LINE
- m is the SLOPE
- q is the y-INTERCEPT

Polynomial Functions Rational Functions Irrational Functions

SPECIAL POLYNOMIALS: LINEAR

LINEAR POLYNOMIAL=DEGREE 1

Special notation: $\mathbf{y} = \mathbf{m}\mathbf{x} + \mathbf{q}$

- represents a LINE
- m is the SLOPE
- q is the y-INTERCEPT

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Polynomial Functions Rational Functions Irrational Functions

Special Polynomials: Linear

LINEAR POLYNOMIAL=DEGREE 1

Special notation: $\mathbf{y} = \mathbf{m}\mathbf{x} + \mathbf{q}$

- represents a LINE
- m is the SLOPE
- q is the y-INTERCEPT

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Discussion Question: Can we represent all lines through polynomial functions?

Polynomial Functions Rational Functions Irrational Functions

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Special Polynomials: Quadratic

QUADRATIC POLYNOMIAL=DEGREE 2

Special notation: $y = ax^2 + bx + c$

- represents a PARABOLA
- $a > 0 \longrightarrow$ 'HAPPY'

Polynomial Functions Rational Functions Irrational Functions

Special Polynomials: Quadratic

QUADRATIC POLYNOMIAL=DEGREE 2

Special notation: $y = ax^2 + bx + c$

- represents a PARABOLA
- $a > 0 \longrightarrow$ 'HAPPY'

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Polynomial Functions Rational Functions Irrational Functions

Special Polynomials: Quadratic

QUADRATIC POLYNOMIAL=DEGREE 2

Special notation: $y = ax^2 + bx + c$

- represents a PARABOLA
- $a > 0 \longrightarrow$ 'HAPPY'
- a < 0 → 'SAD'

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Polynomial Functions Rational Functions Irrational Functions

Special Polynomials: Quadratic

QUADRATIC POLYNOMIAL=DEGREE 2

Special notation: $y = ax^2 + bx + c$

- represents a PARABOLA
- $a > 0 \longrightarrow$ 'HAPPY'

•
$$a < 0 \longrightarrow 'SAD'$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Quadratic Formula $x_1, x_2 = rac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Polynomial Functions Rational Functions Irrational Functions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

RATIONAL FUNCTIONS: RATIO OF POLYNOMIALS

Definition					
$R(x)=\frac{P(x)}{Q(x)},$	where	<i>P</i> , <i>Q</i>	are polynomials		

Polynomial Functions Rational Functions Irrational Functions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

RATIONAL FUNCTIONS: RATIO OF POLYNOMIALS

Definition

$$R(x) = \frac{P(x)}{Q(x)}$$
, where P, Q are polynomials

• Domain: Denominator $Q \neq 0$

Polynomial Functions Rational Functions Irrational Functions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

RATIONAL FUNCTIONS: RATIO OF POLYNOMIALS

Definition

$$R(x) = \frac{P(x)}{Q(x)}$$
, where P, Q are polynomials

• Domain: Denominator $Q \neq 0$

$$f(x) = \frac{x}{3x - 2}$$
$$f(x) = \frac{\frac{1}{3}x^5 - \sqrt{2}x}{-x^3 + 2}$$
$$f(x) = 3x^{-2} + 4x^5$$

Polynomial Functions Rational Functions Irrational Functions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

RATIONAL FUNCTIONS: RATIO OF POLYNOMIALS

Definition

$$R(x) = \frac{P(x)}{Q(x)}$$
, where P, Q are polynomials

• Domain: Denominator $Q \neq 0$

$$f(x) = \frac{x}{3x - 2}$$
$$f(x) = \frac{\frac{1}{3}x^5 - \sqrt{2}x}{-x^3 + 2}$$
$$f(x) = 3x^{-2} + 4x^5$$

Q: Can you find the Domain of the previous functions?

Polynomial Functions Rational Functions Irrational Functions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

IRRATIONAL FUNCTIONS: ROOTS OF POLYNOMIALS

	Definiti	on		
$I(x) = \sqrt[n]{P(x)},$	where	Ρ	is a polynomial	

Polynomial Functions Rational Functions Irrational Functions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

IRRATIONAL FUNCTIONS: ROOTS OF POLYNOMIALS

	Definition				
$I(x) = \sqrt[n]{P(x)},$	where	Ρ	is a polynomial		

• $n \text{ ODD} \longrightarrow \text{Domain} = \mathbb{R}$

Polynomial Functions Rational Functions Irrational Functions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

IRRATIONAL FUNCTIONS: ROOTS OF POLYNOMIALS

Definition

 $I(x) = \sqrt[n]{P(x)}$, where *P* is a polynomial

- $n \text{ ODD} \longrightarrow \text{Domain} = \mathbb{R}$
- $n \text{ EVEN} \longrightarrow \text{Domain: } P(x) \ge 0$

Polynomial Functions Rational Functions Irrational Functions

IRRATIONAL FUNCTIONS: ROOTS OF POLYNOMIALS

Definition

 $I(x) = \sqrt[n]{P(x)}$, where *P* is a polynomial

- $n \text{ ODD} \longrightarrow \text{Domain} = \mathbb{R}$
- $n \text{ EVEN} \longrightarrow \text{Domain: } P(x) \ge 0$

$$f(x) = \sqrt{x^3 - \sqrt{2}x^2}$$
$$f(x) = \sqrt[3]{2017x^{2017} - x^5 + 1}$$
$$f(x) = (x - 1)^{\frac{3}{8}} \quad \text{WHY?}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Polynomial Functions Rational Functions Irrational Functions

IRRATIONAL FUNCTIONS: ROOTS OF POLYNOMIALS

Definition

 $I(x) = \sqrt[n]{P(x)}$, where *P* is a polynomial

•
$$n \text{ ODD} \longrightarrow \text{Domain} = \mathbb{R}$$

•
$$n \text{ EVEN} \longrightarrow \text{Domain: } P(x) \ge 0$$

$$f(x) = \sqrt{x^3 - \sqrt{2}x^2}$$
$$f(x) = \sqrt[3]{2017x^{2017} - x^5 + 1}$$
$$f(x) = (x - 1)^{\frac{3}{8}} \quad \text{WHY?}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Q: Can you find the Domain of the previous functions?

Polynomial Functions Rational Functions Irrational Functions

CONCLUSION AND REFLECTIONS

• Functions (Definition, Domain)

Polynomial Functions Rational Functions Irrational Functions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

CONCLUSION AND REFLECTIONS

- Functions (Definition, Domain)
- Polynomials (Linear, Quadratic)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

CONCLUSION AND REFLECTIONS

- Functions (Definition, Domain)
- Polynomials (Linear, Quadratic)
- Rational Functions (Denominator \neq 0)

CONCLUSION AND REFLECTIONS

- Functions (Definition, Domain)
- Polynomials (Linear, Quadratic)
- Rational Functions (Denominator \neq 0)
- Irration Functions (Radicand \geq 0 if EVEN)

CONCLUSION AND REFLECTIONS

- Functions (Definition, Domain)
- Polynomials (Linear, Quadratic)
- Rational Functions (Denominator \neq 0)
- Irration Functions (Radicand \geq 0 if EVEN)

What if we combine RATIONAL and IRRATIONAL Functions?

$$f(x) = \sqrt{\frac{2x^3 - 5x^5}{4x^2 - 3x + 1}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

CONCLUSION AND REFLECTIONS

- Functions (Definition, Domain)
- Polynomials (Linear, Quadratic)
- Rational Functions (Denominator \neq 0)
- Irration Functions (Radicand \geq 0 if EVEN)

What if we combine RATIONAL and IRRATIONAL Functions?

$$f(x) = \sqrt{\frac{2x^3 - 5x^5}{4x^2 - 3x + 1}}$$

Q: Can you find the DOMAIN of this function?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで