Functions: Introduction and Examples

Diego Ricciotti

Calculus 1

Learning Objectives

By the end of this lesson you will be able to...

- Define functions and the associated concepts of Domain and Codomain
- Classify different types of elementary functions
- Compute the domain of such functions

TABLE OF CONTENTS

(1) Functions

- Definition
- Examples
(2) Elementary Functions
- Polynomial Functions
- Rational Functions
- Irrational Functions

What is A FUNCTION?

- A RULE that associates to each Input only 1 Output
- Input = Domain (D)
- Output $=$ Codomain (C)

EXAMPLES OF FUNCTIONS

EXAMPLES OF FUNCTIONS

Functions of a Real variable

- Domain $\subset \mathbb{R}$
- Codomain $\subset \mathbb{R}$
- GRAPH representation in the plane

Functions of a Real variable

- Domain $\subset \mathbb{R}$
- Codomain $\subset \mathbb{R}$
- GRAPH representation in the plane

$$
y=f(x)=x^{-4}
$$

Polynomial Functions

Definition

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}
$$

Polynomial Functions

Definition

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}
$$

- Domain $=\mathbb{R}$
- n is the DEGREE (integer)
- $a_{n}, a_{n-1}, \ldots, a_{0}$ are the COEFFICIENTS

Polynomial Functions

Definition

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}
$$

- Domain $=\mathbb{R}$
- n is the DEGREE (integer)
- $a_{n}, a_{n-1}, \ldots, a_{0}$ are the COEFFICIENTS

$$
\begin{aligned}
& f(x)=2 x-\frac{5}{3} \quad \text { degree } 1 \\
& f(x)=x+\sqrt{2} x^{3} \quad \text { degree } 3, \text { not ordered } \\
& f(x)=3 x^{-2}+4 x^{5} \quad \text { NOT a polynomial! WHY? }
\end{aligned}
$$

Special Polynomials: Linear

LINEAR POLYNOMIAL=DEGREE 1

Special notation: $\mathbf{y}=\mathbf{m x}+\mathbf{q}$

- represents a LINE
- m is the SLOPE
- q is the y-INTERCEPT

Special Polynomials: Linear

LINEAR POLYNOMIAL=DEGREE 1

Special notation: $\mathbf{y}=\mathbf{m x}+\mathbf{q}$

- represents a LINE
- m is the SLOPE
- q is the y-INTERCEPT

Special Polynomials: Linear

LINEAR POLYNOMIAL=DEGREE 1

Special notation: $\mathbf{y}=\mathbf{m x}+\mathbf{q}$

- represents a LINE
- m is the SLOPE
- q is the y-INTERCEPT

Discussion Question: Can we represent all lines through polynomial functions?

Special Polynomials: Quadratic

QUADRATIC POLYNOMIAL=DEGREE 2

Special notation: $y=a x^{2}+b x+c$

- represents a PARABOLA
- $a>0 \longrightarrow$ 'HAPPY'

Special Polynomials: Quadratic

QUADRATIC POLYNOMIAL=DEGREE 2

Special notation: $y=a x^{2}+b x+c$

- represents a PARABOLA
- $a>0 \longrightarrow$ 'HAPPY'

Special Polynomials: Quadratic

QUADRATIC POLYNOMIAL=DEGREE 2

Special notation: $y=a x^{2}+b x+c$

- represents a PARABOLA
- $a>0 \longrightarrow$ 'HAPPY'
- $a<0 \longrightarrow$ 'SAD'

Special Polynomials: Quadratic

QUADRATIC POLYNOMIAL=DEGREE 2

Special notation: $y=a x^{2}+b x+c$

- represents a PARABOLA
- $a>0 \longrightarrow$ 'HAPPY'
- $a<0 \longrightarrow$ 'SAD'

Quadratic Formula

$$
x_{1}, x_{2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Rational Functions: Ratio of Polynomials

Definition

$$
R(x)=\frac{P(x)}{Q(x)}, \quad \text { where } P, Q \text { are polynomials }
$$

Rational Functions: Ratio of Polynomials

Definition

$$
R(x)=\frac{P(x)}{Q(x)}, \quad \text { where } \quad P, Q \text { are polynomials }
$$

- Domain: Denominator $Q \neq 0$

Rational Functions: Ratio of Polynomials

Definition

$$
R(x)=\frac{P(x)}{Q(x)}, \quad \text { where } P, Q \text { are polynomials }
$$

- Domain: Denominator $Q \neq 0$

$$
\begin{aligned}
& f(x)=\frac{x}{3 x-2} \\
& f(x)=\frac{\frac{1}{3} x^{5}-\sqrt{2} x}{-x^{3}+2} \\
& f(x)=3 x^{-2}+4 x^{5}
\end{aligned}
$$

Rational Functions: Ratio of Polynomials

Definition

$$
R(x)=\frac{P(x)}{Q(x)}, \quad \text { where } \quad P, Q \text { are polynomials }
$$

- Domain: Denominator $Q \neq 0$

$$
\begin{aligned}
& f(x)=\frac{x}{3 x-2} \\
& f(x)=\frac{\frac{1}{3} x^{5}-\sqrt{2} x}{-x^{3}+2} \\
& f(x)=3 x^{-2}+4 x^{5}
\end{aligned}
$$

Q: Can you find the Domain of the previous functions?

Irrational Functions: Roots of Polynomials

Definition

$I(x)=\sqrt[n]{P(x)}, \quad$ where $\quad P$ is a polynomial

Irrational Functions: Roots of Polynomials

Definition

$$
I(x)=\sqrt[n]{P(x)}, \quad \text { where } \quad P \text { is a polynomial }
$$

- n ODD \longrightarrow Domain $=\mathbb{R}$

Irrational Functions: Roots of Polynomials

Definition

$I(x)=\sqrt[n]{P(x)}$, where $\quad P$ is a polynomial

- n ODD \longrightarrow Domain $=\mathbb{R}$
- n EVEN \longrightarrow Domain: $P(x) \geq 0$

Irrational Functions: Roots of Polynomials

Definition

$$
I(x)=\sqrt[n]{P(x)}, \quad \text { where } P \text { is a polynomial }
$$

- n ODD \longrightarrow Domain $=\mathbb{R}$
- n EVEN \longrightarrow Domain: $P(x) \geq 0$

$$
\begin{aligned}
& f(x)=\sqrt{x^{3}-\sqrt{2} x^{2}} \\
& f(x)=\sqrt[3]{2017 x^{2017}-x^{5}+1} \\
& f(x)=(x-1)^{\frac{3}{8}} \quad \text { WHY? }
\end{aligned}
$$

Irrational Functions: Roots of Polynomials

Definition

$$
I(x)=\sqrt[n]{P(x)}, \quad \text { where } P \text { is a polynomial }
$$

- n ODD \longrightarrow Domain $=\mathbb{R}$
- n EVEN \longrightarrow Domain: $P(x) \geq 0$

$$
\begin{aligned}
& f(x)=\sqrt{x^{3}-\sqrt{2} x^{2}} \\
& f(x)=\sqrt[3]{2017 x^{2017}-x^{5}+1} \\
& f(x)=(x-1)^{\frac{3}{8}} \quad \text { WHY? }
\end{aligned}
$$

Q: Can you find the Domain of the previous functions?

Conclusion and Reflections

- Functions (Definition, Domain)

Conclusion and Reflections

- Functions (Definition, Domain)
- Polynomials (Linear, Quadratic)

Conclusion and Reflections

- Functions (Definition, Domain)
- Polynomials (Linear, Quadratic)
- Rational Functions (Denominator $\neq 0$)

Conclusion and Reflections

- Functions (Definition, Domain)
- Polynomials (Linear, Quadratic)
- Rational Functions (Denominator $\neq 0$)
- Irration Functions (Radicand ≥ 0 if EVEN)

Conclusion and Reflections

- Functions (Definition, Domain)
- Polynomials (Linear, Quadratic)
- Rational Functions (Denominator $\neq 0$)
- Irration Functions (Radicand ≥ 0 if EVEN)

What if we combine RATIONAL and IRRATIONAL Functions?

$$
f(x)=\sqrt{\frac{2 x^{3}-5 x^{5}}{4 x^{2}-3 x+1}}
$$

Conclusion and Reflections

- Functions (Definition, Domain)
- Polynomials (Linear, Quadratic)
- Rational Functions (Denominator $\neq 0$)
- Irration Functions (Radicand ≥ 0 if EVEN)

What if we combine RATIONAL and IRRATIONAL Functions?

$$
f(x)=\sqrt{\frac{2 x^{3}-5 x^{5}}{4 x^{2}-3 x+1}}
$$

Q: Can you find the DOMAIN of this function?

